Skip to main content

The Smallest Hard-to-Color Graphs for Sequential Coloring Algorithms

  • Conference paper
Operations Research Proceedings 1999

Part of the book series: Operations Research Proceedings 1999 ((ORP,volume 1999))

  • 373 Accesses

Summary

For a given approximate coloring algorithm a graph G is said to be hard-to-color (HC) if every implementation of the algorithm uses more colors than the chromatic number. For a collection of such algorithms G is called a benchmark if it is HC for every algorithm in the collection. In the paper we study the performance of six sequential algorithms when used in two models of coloring: classical and chromatic sum. We give the smallest HC graph for each of them and two collective benchmarks for both models of coloring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 132.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babel, L.; Tinhofer, G. (1994): Hard-to-color graphs for connected sequential colorings, Ann. Disc. Math. 51, 1994, pp. 3–25.

    Article  Google Scholar 

  2. Bar-Noy, A.; Kortsarz, G. (1998): The minimum color sum of bipartite graphs, J. Algorithms 28, 1998, pp. 339–365.

    Article  Google Scholar 

  3. Brélaz, D. (1979): New methods to color the vertices of a graph, Comm. ACM 22, 1979, pp. 251–256

    Article  Google Scholar 

  4. Hansen, P.; Kuplinsky, J. (1990): Slightly hard-to-color graphs. Cong. Numer. 78, 1990, pp. 81–98.

    Google Scholar 

  5. Hansen, P.; Kuplinsky, J. (1991): The smallest hard-to-color graph, Disc. Math. 98, 1991, pp.199–212.

    Article  Google Scholar 

  6. Janczewski, R.; Kubale, M; Manuszewski, K.; Piwakowski, K. (2000): The smallest hard-to-color graph for algorithm DSATUR (to appear in Disc. Math).

    Google Scholar 

  7. Johnson, D.S. (1974): Worst-case behavior of graph coloring algorithms, in: Proc. 5th S.E. Conf. on Combinatorics, Graph Theory and Computing, Utilitas Math., Winnipeg, 1974, pp. 513–527.

    Google Scholar 

  8. Johnson, D.S.; Trick, M.A. (eds.) (1996): Cliques, Coloring and Satisfiability, DIMACS Series in Discrete Mathematic and Theoretical Computer Science 26, 1996.

    Google Scholar 

  9. Kubale, M; Manuszewski, K. (1999): The smallest hard-to-color graphs for the classical, total and strong colorings of vertices, Contr. Cyber. 28, 1999.

    Google Scholar 

  10. Kubale, M; Pakulski, J. (1994): A catalogue of the smallest hard-to-color graphs, in: Proc. Int. Conf. Operations Research′94, Berlin, 1994, pp. 133–138.

    Google Scholar 

  11. Kubale, M.; Pakulski, J.K.; Piwakowski, K. (1997): The smallest hard-to-color graph for the SL algorithm, Dics. Math. 164, 1997, pp. 197–212.

    Article  Google Scholar 

  12. Manuszewski, K. (1998): Graphs Algorithmically Hard to Color, Ph.D. Thesis, Technical University of Gdańsk (in Polish).

    Google Scholar 

  13. Matula, D.W.; Marble, G.; Isaacson, D. (1972): Graph coloring algorithms, in: Graph Theory and Computing, Academic Press, New York, 1972, pp. 109–122.

    Google Scholar 

  14. Welsh, D.J.; Powell, M.B. (1967): An upper bound for the chromatic number of a graph and its application to timetabling problem, Comp. J. 10, 1967, pp. 85–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kubale, M., Manuszewski, K. (2000). The Smallest Hard-to-Color Graphs for Sequential Coloring Algorithms. In: Inderfurth, K., Schwödiauer, G., Domschke, W., Juhnke, F., Kleinschmidt, P., Wäscher, G. (eds) Operations Research Proceedings 1999. Operations Research Proceedings 1999, vol 1999. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58300-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58300-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67094-0

  • Online ISBN: 978-3-642-58300-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics