Skip to main content

Heat Shock Protein-Peptide Interaction: Basis for a New Generation of Vaccines Against Cancers and Intracellular Infections

  • Chapter
Stress Proteins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 136))

  • 174 Accesses

Abstract

The observations that inbred mice and rats can be immunized against their own tumors or against tumors of the same genetic background were convincingly made between 1943 and 1962 (Gross 1943; Foley 1953; Prehn and Main 1957; Klein et al. 1960; Old et al. 1962, for review, see Srivastava and Old 1988). They provided the underpinnings for the idea of immunogenicity of cancers and by deduction, of the existence of tumor-specific antigens. These studies showed that mice vaccinated with inactivated cancer cells are immune to subsequent challenges of live cancer cells. The phenomenon was shown to be individually tumor-specific, in that mice were resistant specifically to the tumors which were used to immunize them and not to other tumors (Basombrio 1970; Globerson and Feldman 1964), hence the name individually distinct tumor rejection antigens. The demonstration of immunogenicity of cancer cells led to a search for the cancer-derived molecules, which elicit resistance to tumor challenges. The general structure of these experiments was to fractionate cancer-derived proteins and test them individually for their ability to immunize mice against the cancers from which the fractions were prepared (see Srivastava and Old 1988; Old 1981, and Boon 1992 for other approaches to identification of tumor-specific antigens). The proteins of 96kDa, 90kDa and 70kDa size identified by the method (Table 1; Srivastava and Das 1984; Srivastava et al. 1986; Ullrich et al. 1986; Udono and Srivastava 1993) turned out to be related to a class of proteins known as heat shock proteins (hsps) or stress-induced proteins (see Lindquist and Craig 1988). Similar to the immunogenicity of intact tumor cells, it turned out that hsps gp96, hsp90 and hsp70 isolated from tumors were able to immunize and elicit protective immunity specifically against the tumors from which the hsps were isolated. Hsps isolated from normal tissues were found to be unable to elicit immunitv to any cancers tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold D, Faath S, Rammensee H, Schild H (1995) Cross-priming of minor histocom-patibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 182(3):885–889

    Article  PubMed  CAS  Google Scholar 

  • Arnold D, Wahl C., Faath S, Rammensee HG, Schild H (1997) Influences of transporter associated with antigen processing (TAP) on the repertoire of peptides associated with the endoplasmic reticulum-resident stress protein gp96. J Exp Med 186(3):461–466

    Article  PubMed  CAS  Google Scholar 

  • Barrios C., Lussow AR, van Embden J, Van der Zee R, Rappuoli R, Costantino P, Louis JA, Lambert PH, Del Giudice G (1992) Mycobacterial heat shock proteins as carrier molecules II: the use of the 70 kda mycobacterial heat shock protein as carrier for conjugated vaccines can circumvent the need for adjuvants and BCG priming. Eur J Immunol 22:1365

    Article  PubMed  CAS  Google Scholar 

  • Basombrío MA (1970) Search for common antigenicities among 25 sarcomas induced by methylcholanthrene. Cancer Res 30:2458

    PubMed  Google Scholar 

  • Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186(8):1315–1322

    Article  PubMed  CAS  Google Scholar 

  • Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK (1993) Heat shock protein vaccines against cancer. J Immunother 14:352

    Article  CAS  Google Scholar 

  • Boon T (1992) Toward a genetic analysis of tumor rejection antigens. Adv Cancer Res 58:177–210

    Article  PubMed  CAS  Google Scholar 

  • Booth C., Koch GL (1989) Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell 59(4):729–737

    Article  PubMed  CAS  Google Scholar 

  • Brichard V, van Pel A, Wolfel T, DePlaen E, Lethe B, Coulie P, Boon T (1993) The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 178(2):489–495

    Article  PubMed  CAS  Google Scholar 

  • Deres K, Schild H, Wiesmuller KH, Jung G, Rammensee HG (1989) In vivo priming of virus-specific cytotoxic T lymphocytes with synthetic lipopeptide vaccines. Nature 342:561

    Article  PubMed  CAS  Google Scholar 

  • Flynn GC., Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245(4916):385–390

    Article  PubMed  CAS  Google Scholar 

  • Flynn GC., Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353(6346):726–730

    Article  PubMed  CAS  Google Scholar 

  • Foley EJ (1953) Cancer Res 13: 835–837

    PubMed  CAS  Google Scholar 

  • Globerson A, Feldman M (1964) Antigenic specificity of benzo(a)pyrene induced sarcomas. J Natl Cancer Inst 32:1229

    PubMed  CAS  Google Scholar 

  • Gross L (1943) Cancer Res 3:323–326

    Google Scholar 

  • Heikema A, Agsteribbe E, Wiscjut J, Huckriede A (1997) Generation of heat shock protein-based vaccines by intracellular loading of gp96 with antigenic peptides. Immunol Lett 57(1-3):69–74

    Article  PubMed  CAS  Google Scholar 

  • Houghton AN (1994) Cancer antigens: immune recognition of self and altered self. J Exp Med 180(1):1–4

    Article  PubMed  CAS  Google Scholar 

  • Huang AYC., Gulden PH, Woods AS, Thomas MC., Tong CD, Wang W, Engelhard VH, Pasternack G, Cotter R, Hunt D, Pardoll D, Jaffe E (1996) The immunodominant MHC class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc Natl Acad Sci USA 93(18):9730–9735

    Article  PubMed  CAS  Google Scholar 

  • Klein G, Sjorgen HO, Klein E, Hellstrom KE (1960) Cancer Res 20: 1561–1572

    PubMed  CAS  Google Scholar 

  • Levraud J, Pannetier C., Langlade-Demoyen, Brichard V, Kourilsky P (1996) Recurrent T cell receptor rearrangements in the cytotoxic T lymphocyte response in vivo against the p815 murine tumor. J Exp Med 183:439–449

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Srivastava PK (1993) Tumor rejection antigen Gp96/ Grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143

    PubMed  CAS  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  CAS  Google Scholar 

  • Lussow AR, Barrios C., van Embden J, Van der Zee R, Verdini AS, Pessi A, Louis JA, Lambert PH, Del Giudice G (1991) Mycobacterial heat shock proteins as carrier molecules. Eur J Immunol 21:2297

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Berke G, Fridkin M, Feldman M, Eisenstein M, Eisenbach L (1997) CTL induction by a tumor-associated antigen octapeptide derived from a murine lung carcinoma. Nature 390:643

    Article  PubMed  CAS  Google Scholar 

  • Mandelboim O, Vadai E, Fridkin M, Katz-Hillel A, Feldman M, Berke G, Eisenbach L (1995) Regression of established murine carcinoma métastases following vaccination with tumour-associated antigen peptides. Nature Med 1:1179–1183

    Article  PubMed  CAS  Google Scholar 

  • Nieland TJ, Tan MC., Monne-van Muijen M, Koning F, Kruisbeek AM, van Bleek GM (1996) Isolation of an immunodominant viral peptide that is endogenously bound to the stress protein GP96/GRP94. Proc Natl Acad Sci USA 93(12):6135–6139

    Article  PubMed  CAS  Google Scholar 

  • Noguchi Y, Chen YT, Old LJ (1994) A mouse mutant p53 product recognized by CD4+ and CD8+ T cells. Proc Natl Acad Sci USA 91(8):3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Old LJ, Boyse EA, Clarke DA, Carswell EA (1962) Antigenic properties of chemically induced tumors. Ann NY Acad Sci 101:80

    Article  CAS  Google Scholar 

  • Old LJ (1981) The search for specificity: GHA Clowes Memorial Lecture. Cancer Res 41:361–375

    PubMed  CAS  Google Scholar 

  • Pardoll DM (1994) Tumour antigens. A new look for the 1990s. Nature 369(6479)357

    Article  PubMed  CAS  Google Scholar 

  • Peng P, Menoret A, Srivastava PK (1997) Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods 204(1):13–21

    Article  PubMed  CAS  Google Scholar 

  • Prehn RT, Main JM (1957) Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst 18:769

    PubMed  CAS  Google Scholar 

  • Ramarathinam L, Sarma S, Marie M, Zhao M, Yang G, Chen L, Liu Y (1995) Multiple lineages of tumors express a common tumor antigen, PI A, but they are not cross protected. J Immunol 155:5323

    PubMed  CAS  Google Scholar 

  • Rosen D, Brookenthal K, Berke G A reappraisal of the tumor immunoprotective and therapeutic activities of the octapeptide Mut 1 and 2 from mouse Lewis lung carcinoma 3LL. J Immunol (submitted)

    Google Scholar 

  • Salgaller ML, Afshar A, Marincola FM, Rivoltini L, Rosenberg YA (1995) Recognition of multiple epitopes in the human melanoma antigen gplOO by peripheral blood lymphocytes stimulated in vitro with synthetic peptides. Cancer Res 21:4972–4979

    Google Scholar 

  • Schulz M, Zinkernagel RM, Hengartner H (1991) Peptide-induced antiviral protection by cytotoxic T cells. Proc Natl Acad Sci USA 88(3):991–993

    Article  PubMed  CAS  Google Scholar 

  • Shu S, Chou T, Rosenberg SA (1986) In vitro differentiation of T-cells capable of mediating the regression of established syngeneic tumors in mice. Cancer Res 47:1354–1360

    Google Scholar 

  • Spee P, Neefjes J (1997) TAP-translocated peptides specifically bind proteins in the endoplasmic reticulum, including gp96, protein disulfide isomerase and calreticulin. Eur J Immunol 27(9):2441–2449

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Maki RG (1991) Stress-induced proteins in immune response to cancer. In: Capron A, Compans RW, Cooper M et al (eds) Current topics in microbiology and immunology, vol 167. Springer, Berlin Heidelberg New York, pp 109–123

    Google Scholar 

  • Srivastava PK, Heike M (1991) Tumor-specific immunogenicity of stress-induced proteins: convergence of two evolutionary pathways of antigen presentation? Semin Immunol 3(1):57–64

    PubMed  CAS  Google Scholar 

  • Srivastava PK, Old LJ (1988) Individually distinct transplantation antigens of chemically induced mouse tumors. Immunol Today 9:78

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci USA 83:3407

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, Udono H, Blachere NE, Li Z (1994) Heat shock proteins transfer peptides during antigen processing and CTL priming. Immunogenetics 39:93

    Article  PubMed  CAS  Google Scholar 

  • Suto R, Srivastava P (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269(5230):1585–1588

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Peng P, Kang L, Daou M, Srivastava P (1997) Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278:117–120

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Levey DL, Srivastava PK (1994) Definition of T cell sub-sets mediating tumor-specific immunogenicity of cognate heat shock protein gp96. Proc Natl Acad Sci USA 91:3077

    Article  PubMed  CAS  Google Scholar 

  • Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci USA 83:3121–3125

    Article  PubMed  CAS  Google Scholar 

  • Uttenhove C., Maryanski J, Boon T (1983) Escape of mouse mastocytoma p815 after nearly complete rejection is due to antigen-loss variants rather than immunosupression. J Exp Med 157:1040–1052

    Article  Google Scholar 

  • Van den Eynde B, Lethe B, Van Pel A, DePlaen E, Boon T (1991) The gene coding for a major tumor rejection antigen of tumor p815 is identical to the normal gene of syngeneic DBA/2. J Exp Med 173:1373–1384

    Article  PubMed  Google Scholar 

  • Wolfel T, Van Pel A, Brichard V, Schneider J, Seliger B, Meyerzum Buschenfelde KH, Boon T (1994) Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 24(3):759–764

    Article  PubMed  CAS  Google Scholar 

  • Yoshizawa H, Chang AE, Shu S (1992) Cellular interactions in effector cell generation and tumor regression mediated by anti-CD3/interleukin 2-activated tumor-draining lymph node cells. Cancer Res 52:1129–1136

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, P.K. (1999). Heat Shock Protein-Peptide Interaction: Basis for a New Generation of Vaccines Against Cancers and Intracellular Infections. In: Latchman, D.S. (eds) Stress Proteins. Handbook of Experimental Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58259-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58259-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63519-9

  • Online ISBN: 978-3-642-58259-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics