Skip to main content

Heat Stress Proteins and Their Relationship to Myocardial Protection

  • Chapter
Stress Proteins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 136))

Abstract

Acute myocardial infarction is the most common cause of death in men in the Western world. The treatment of this condition is no longer simply supportive, awaiting the complications of ischaemic injury, but has entered a new era where the mortality of acute myocardial infarction can be approximately halved by thrombolytic agents and aspirin (ISIS-2 1988), with the greatest benefit seen in those treated soon after the onset of symptoms. The lack of a reduction in mortality when thrombolytic treatment is administered late is most likely due to the fact that the prolonged coronary occlusion has resulted in such severe necrosis of the myocardium that little benefit can be derived by restoring blood flow (Reimer and Jennings 1979). Therefore any intervention that could delay the onset of tissue necrosis could buy valuable time by extending the effective temporal window for thrombolysis. Attempts to limit myocardial infarct size over the last decade with exogenous pharmacological agents have been largely unsuccessful (Hearse and Yellon 1983), prompting us and others to explore the heart’s endogenous protective mechanisms to ascertain if this route may provide us with the knowledge required to protect the myocardium from severe ischaemic injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuld R, Ganote CE, Nayler WG, Piper HM (1991) What constitutes the calcuim paradox?. J Mol Cell Cardiol 23:765–767

    Article  PubMed  CAS  Google Scholar 

  • Bansal G, Norton PM, Latchman DS (1991) The 90kd heat shock protein protects cells from stress but not from viral infection. Exp Cell Res 195:303–306

    Article  PubMed  CAS  Google Scholar 

  • Barbe M, Tytell M, Gower DJ, Welch WJ (1988) Htperthermia protects against light damage in the rat retina. Science 241:1820–1871

    Article  Google Scholar 

  • Bennardini F, Wrzosek A, Chiesi M (1992) Alpha B-crystallin in cardiac tissue. Association with actin and desmin filaments. Circ Res 71:288–294

    Article  PubMed  CAS  Google Scholar 

  • Black A, Subjeck JR (1991) The biology and physiology of the heat shock and glucose regulated stress protein systems. Karger, Basel

    Google Scholar 

  • Black S, Lucchesi BR (1993) Heat shock proteins and the ischémie heart. An endogenous protective mechanism. Circulation 87:1048–1051

    Article  PubMed  CAS  Google Scholar 

  • Burgman P, Konings AWT (1992) Heat induced protein denaturation in the particular fraction of HeLa S3 cells: effect of thermotolerance. J Cell Physiol 153:88–94

    Article  PubMed  CAS  Google Scholar 

  • Ceconi C., Curello S, Cargooioni A, Ferrari R, Albertini A, Visioli O (1988) The role of glutathione status in the protection against ischaemic and reperfusion damage: effects of N-acetyl cysteine. J Mol Cell Cardiol 20:5–13

    Article  PubMed  CAS  Google Scholar 

  • Christman M, Morgan RW, Jacobson FS, Ames BN (1985) Positive control of a regulon for defences against oxidative stress and some heat shock proteins in Salmonella typhimurium. Cell 41:753–762

    Article  PubMed  CAS  Google Scholar 

  • Ciocca DR, Fuqua SA, Lock Lim S, Toft DO, Welch WJ (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52:3648–3654

    PubMed  CAS  Google Scholar 

  • Cornelussen R, Spiering W, Webers JH, de Bruin LG, Reneman RS, van der Vusse GJ, Snoeckx LH (1994) Heat shock improves ischaemic tolerance of hypertrophied rat hearts. Am J Physiol 267:H1941–H1947

    PubMed  CAS  Google Scholar 

  • Cumming, DVR, Heads J, Watson A, Latchman DJ, Yellon DM (1996) Differential protection of primary rat cardiocytes by transfection of specific heat stress proteins. J Mol Cell Cardiol 28:2343–2349

    Article  PubMed  CAS  Google Scholar 

  • Currie R (1987) Effects of ischemia and perfusion temperature on the synthesis of stress induced (heat shock) proteins in isolated and perfused rat hearts. J Mol Cardiol 19:795–808

    Article  CAS  Google Scholar 

  • Currie R, Karmazyn M (1990) Improved post-ischemic ventricular recovery in the absence of changes in energy metabolism in working rat hearts following heat shock. J Mol Cell Cardiol 22:631–636

    Article  PubMed  CAS  Google Scholar 

  • Currie RWM, Karmazyn M, Kloc M, Mailer K (1988) Heat-shock response is associated with enhanced postischemic ventricular recovery. Circ Res 63:543–549

    Article  PubMed  CAS  Google Scholar 

  • Currie RW, BM, Davis TA (1990) Induction of the heat shock response in rats modulates heart rate, creatine kinase and protein synthesis after a subsequent hyperthermic treatment. Cardiovasc Res 24:87–93

    Article  PubMed  CAS  Google Scholar 

  • Currie RW, Tanguay RM (1991) Analysis of RNA for transcripts for catalase and SP71 in rat hearts after in vivo hyperthermia. Biochem Cell Biol 69:375–382

    Article  PubMed  CAS  Google Scholar 

  • Currie RW, Tanguay RM, Kingma JG (1993) Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87:963–971

    Article  PubMed  CAS  Google Scholar 

  • Currie RW, White FP (1983) Characterization of the synthesis and accumulation of a 71-kilodalton protein induced in rat tissues after hyperthermia. Can J Biochem Cell Biol 61:438–446

    Article  PubMed  CAS  Google Scholar 

  • Delcayre C., Samuel JL, Marotte F, Best Belpomene, Mercadier JJ, Rappaport, L (1988) Synthesis of stress proteins in rat cardiac myocytes 2-4 days after imposition of hemodynamic overload. J Clin Invest 82:460–468

    Article  PubMed  CAS  Google Scholar 

  • Donnelly TJ, Sievers RE, Vissern FC., Welch WJ, Wolfe CL (1992) Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation 85:769–778

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Ceconi C., Curello A, Ruigrok TJC (1989) No evidence of oxygen free radicals-mediated damage during the calcium paradox. Basic Res Cardiol 84:396–403

    Article  PubMed  CAS  Google Scholar 

  • Gerner E, Scheider MJ (1975) Induced thermal resistance in HeLa cells. Nature 256:500–502

    Article  PubMed  CAS  Google Scholar 

  • Green L, Liem RK (1989) Beta-internexin is a microtubule-associated protein identical to the heat-shock cognate protein and the clathrin uncoating ATPase. J Biol Chem 264:15210–15215

    PubMed  CAS  Google Scholar 

  • Havre PA, Hammond GL (1988) Isolation of a translation-inhibiting peptide from myocardium. Am J Physiol 255:H1024–H1031

    PubMed  CAS  Google Scholar 

  • Heads RJ, Latchman DS, Yellon DM (1994) Stable high level expression of a transfected human HSP70 gene protects a heart-derived muscle cell line against thermal stress. J Mol Cell Cardiol 26:695–699

    Article  PubMed  CAS  Google Scholar 

  • Heads RJ, Yellon DM, Latchman DS (1995) Differential cytoprotection against heat stress or hypoxia following expression of specific stress protein genes in myogenic cells. J Mol Cell Cardiol 27:1669–1678

    Article  PubMed  CAS  Google Scholar 

  • Hearse H, Yellon DM (1983) Why are we still in doubt about infarct size limitation? The experimental viewpoint. In: Hearse DJ, Yellon DM (eds) Therapeutic approaches to myocardial infarct size limitation. Raven, New York, pp 17–41

    Google Scholar 

  • Hoshida S, Kuzuya T, Yamashita N, Fuji H, Oe H, Hori M, Suzuki K, Taniguchi Tada M (1992) Sublethal ischemia alters myocardial antioxidant activity in canine heart. Am J Physiol 264:H33–H39

    Google Scholar 

  • Howard G, Geoghegan TE (1986) Altered cardiac tissue gene expression during acute hypoxia exposure. Mol Cell Biochem 69:155–160

    Article  PubMed  CAS  Google Scholar 

  • Huber SA (1992) Heat-shock protein induction in adriamycin and picornavirus-infected cardiocytes. Lab Invest 67:218–224

    PubMed  CAS  Google Scholar 

  • Hutter M, Sievers RE, Wolfe CL (1994) Heat shock protein induction in rat hearts; a direct correlation between the amount of heat shock protein and the degree of myocardial protection. Circulation 89:355–360

    Article  PubMed  CAS  Google Scholar 

  • ISIS-2 (International Study of Infarct Survival) study collaborative group (1988) Randomised trial of IV streptokinase,oral aspirin,both or neither among 17187 cases of suspected acute myocardial infarction. Lancet ii:349–360

    Google Scholar 

  • Johnston R, Kucey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554

    Article  PubMed  CAS  Google Scholar 

  • Karmazyn M, Mailer K, Currie RW (1990) Acquisition and decay of heat-shock-enhanced postischemic ventricular recovery. Am J Physiol 259:H424–H431

    PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Tagaya M, Hata R, Ueda H, Niinobe M, Handa N, Fukunaga R, Kimura K, Mikoshiba K, Kamada T (1990) “Ischémie tolerance“ phenomenon found in the brain. Brain Res 528:21–24

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa K, Matsumoto M, Kuwabara K, Tagaya M, Toshiho O, Hata R, Ureda H, Handa N, Kimura T (1991) Ischemia tolerance phenomenon detected in various brain regions. Brain Res 561:203–211

    Article  PubMed  CAS  Google Scholar 

  • Knowlton A, Brecher P, Apstein CS (1990) Rapid expression of heat shock protein in the rabbit after brief cardiac ischemia. J Clin Invest 87:139–147

    Article  Google Scholar 

  • Knowlton AA, Eberli FR, Brecher P, Romo GM, Owen A (1991) A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J Clin Invest 88:2018–2025

    Article  PubMed  CAS  Google Scholar 

  • Kucukogku S, Iliodromitis E, Van Winkle D, Downey J, Marber M, Heads R, Yellon DM (1991) Protection by ischémie preconditioning appears independent of stress protein synthesis. J Mol Cell Cardiol 23[Suppl V]:S73 (abstract)

    Article  Google Scholar 

  • Kukreja R, Kontos MC., Loesser KE, Batra SK, Qian, Y-Z, Geur CJ, Naseem SA, Jesse RL, Hess ML (1994) Oxidant Stress increases heat shock protein 70mRNA in isolated perfused rat heart. Am J Physiol 36:H2213–H2219

    Google Scholar 

  • Kukreja RC., Hess ML (1992) The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Chretien P, Lambert H, Hickey E, Weber LA (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109:7–15

    Article  PubMed  CAS  Google Scholar 

  • Laszlo A (1992) The thermorésistant state: protection from initial damage or better repair?. Exp Cell Res 202:519–531

    Article  PubMed  CAS  Google Scholar 

  • Li C., Laszlo A (1985) Amino acid analogs whilst inducing heat shock proteins sensitive cells to thermal damage. J Cell Physiol 115:116–122

    Article  Google Scholar 

  • Li G, Hahn GM (1978) Ethanol-Induced tolerance to heat and adriamycin. Nature 274:699–701

    Article  PubMed  CAS  Google Scholar 

  • Li G, LI L, Liu Y, Mak JY, Chen L, Lee WMF (1991) Thermal response of rat fibroblasts stably transfected with the human 70KDa heat protein-encoding gene. Proc Natl Acad Sci USA 88:1681–1685

    Article  PubMed  CAS  Google Scholar 

  • Li G, Li L, Liu RY, Rehman M, Lee WMF (1992) Heat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proc Natl Acad Sci USA 89:2036–2040

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Engelman RM, Moraru LL, Rousou JA, Flach JE, Deaton DW, Maulik N, Das DU (1992) Heat shock. A new approach for myocardial preservation in cardiac surgery. Circulation 86:1358–1363

    Google Scholar 

  • Liu Y, Kato H, Nakata N, Kogure V (1992) Protection of rat hippocampus against ischemic neuronal damage by pretreatment with sublethal ischemia. Brain Res 586:121–124

    Article  PubMed  CAS  Google Scholar 

  • Loesser K, Vinnikova AK, Qian YK, Hess ML, Jesse RL, Kukreja RC (1992) Protection of ischaemia/reperfusion injury by stress in rats. Circulation 86[Suppl I]:I-557 (abstract)

    Google Scholar 

  • Low I, Friedrich T, Schoeppe W (1991) Effects of calcium channel blockers on stress protein synthesis in cardiac myocytes. J Cardiovasc Pharmacol 17:800–806

    Article  Google Scholar 

  • Low I, Friedrich T, von Bredow F, Schoeppe W (1991) A cell culture assay for the detection of cardiotoxicity. J Pharmacol Methods 25:133–145

    Article  Google Scholar 

  • Low I, Friedrich T, Weisensee D, Mitrou P, Schoeppe W (1992) Cytokines induce stress protein formation in cultured cardiac myocytes. Basic Res Cardiol 87:12–18

    Article  Google Scholar 

  • Low I, Friedrich T, Schoeppe W (1989) Synthesis of shock proteins in cultured fetal mouse myocardial cells. Exp Cell Res 180:451–459

    Article  PubMed  CAS  Google Scholar 

  • Lowenstein D, Chan PH, Miles MF (1991) The stress protein resonse in cultered neurones: characterization and evidence for a protective role in excitotoxicity. Neuron 7:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272

    Article  PubMed  CAS  Google Scholar 

  • Marber MS, Mestril R, Chi SU, Sayer MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95:1446–1456

    Article  PubMed  CAS  Google Scholar 

  • Marber MS, Walker JM, Latchman DS, Yellon DM (1993) Attenuation by heat stress of a submaximal calcium paradox in the rabbit heart. J Mol Cell Cardiol 25:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Marber MS, Walker JM, Latchman DS, Yellon DM (1994) Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Clin Invest 93:1087–1094

    Article  PubMed  CAS  Google Scholar 

  • Meerson FZ, Malyshev IY (1989) Adaption to stress increases the heart resistance to ischemic and reperfusion arrhymias. J Mol Cell Cardiol 21:299–303

    Article  PubMed  CAS  Google Scholar 

  • Meerson FZ, Malyshev I, Zamotrinsky AV (1991) Adaptive increase in the resistance of the heart to the calcium paradox. J Moll Cell Cardiol 23[Suppl V]:S162 (abstract)

    Article  Google Scholar 

  • Meerson FZ, Malyshev I, Zamotrinsky AV (1991) Phenomenon of the adaptive stabilization of sarcoplasmic and nuclear structures in myocardium. Basic Res Cardiol 3:205–214

    Google Scholar 

  • Meerson FZ, Malyshev I, Zamtotrinsky AV (1992) Differences in adaptive stabilization of structures in response to stress and hypoxia relate with the accumulation of hsp70 isoforms. Mol Cell Biochem 111:87–89

    Article  PubMed  CAS  Google Scholar 

  • Mehta HB, Popovich BK, Dillmann WH (1988) Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Cire Res 63:512–517

    Article  CAS  Google Scholar 

  • Mestril R, Chi SH, Sayen MR, O’Reilly K, Dillman WH (1994) Expression of inducible stress protein 70 in rat heart myogenic cells confers protection against simulated ischemia-induced injury. J Clin Invest 93:759–767

    Article  PubMed  CAS  Google Scholar 

  • Moalic JM, Bauters C., Himbert D, Bercovici J, Menas J, Guicheney P (1989) Phenylephrine, vasopressin and angiotensin II as determinants of proto-oncogene and heat-shock protein gene expression in adult rat heart and aorta. J Hypertens 7:195–201

    Article  PubMed  CAS  Google Scholar 

  • Morris SB, Cumming DV, Latchmann DS, Yellon DM (1996) Specific induction of the 70 kD heat stress proteins by the tyrosine kinase inhibitor Herbimycin-A protects rat neonatal cardiomyocytes. A new pharmacological route to stress protein expression? J Clin Invest 97(3):244–251

    Article  Google Scholar 

  • Miura T, Adachi T, Ogawa T, Iwato T, Tsuchida A, Iimura O (1992) Myocardial infarct size limiting effect of ischemic preconditioning its natural decay and the effects of repetitive preconditioning. Cardiovasc Pathol 1:147–154

    Article  Google Scholar 

  • Muller D, Topol EJ, Califf RM, Sigmon KN, Gorman L, Gearge BS, Kereiakes DJ, Lee KL, Ellis SG (1990) Relationship between antcedent angina pectoris and shortterm prognosis after thrombolytic therapy for acute myocardial infarction. Thrombolysis and angioplasty in myocardial infarction (TAMI) study group. Am Heart J 119:224–231

    Article  PubMed  CAS  Google Scholar 

  • Nowak TS Jr (1990) Protein synthesis and the heart shock/stress response after ischemia. Cerebrovasc Brain Metab Rev 2:345–366

    PubMed  Google Scholar 

  • Pasini E, Cargnoni A, Ferrari R, Marber MS, Latchman DS, Yellon DM (1991) Heat stress and oxidative damage following iscemia and reperfusion in the isolated rat heart. Eur Heart J 12[Suppl]:306

    Google Scholar 

  • Pauly D, Kirk KA, McMillan JB (1991) Carnitine palmitoyltransferase in cardiac ischemia. A potential site for altered fatty acid metabolism. Circ Res 68:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Plumier JC., Ross BM, Currie RW, Angelidis CE, Kazlaris H, Kollias G, Pagoulatos GN (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95:1854–1860

    Article  PubMed  CAS  Google Scholar 

  • Reimer K, Jennings R (1979) The “wave phenomenon” of myocardial ischemic cell death. II Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 40:633–644

    PubMed  CAS  Google Scholar 

  • Riabowal K, Mizzan LA, Welch WJ (1988) Heat shock is lethal to fibroblasts micro injected with antibodies against hsp70. Science 242:433–436

    Article  Google Scholar 

  • Rordorf G, Koroshetz WJ, Bonventre JV (1991) Heat shock protects cultured neurons from glutamate toxicity. Neuron 7:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Y, Lindquist SL (1990) Hsp 104 required for induced thermotolerance. Science 248:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Schott R, Nao B, Strieter R, Groh M, Kunkel S, McClanahan T, Schaper W, Gallagher K (1990) Heat shock does not precondition canine myocardium. Circulation 82[Suppl III]:III-464 (abstract)

    Google Scholar 

  • Steenberg C., Hill ML, Jennings RB (1987) Cytoskeletal damage during myocardial ischemia: changes in Vinculin immunofiurescence staining during total in vitro ischemia in canine heart. Circ Res 60:478–486

    Article  Google Scholar 

  • Su C-Y, Dillmann WH, Woods WT, Owen OE (1992) Heat shock induced oxidative tolerance in muscle cells. Circulation 84[Suppl I]:I-33 (abstract)

    Google Scholar 

  • Sugahara T, Saito M (1988) Hyperthermic oncology. Taylor and Francis, London

    Google Scholar 

  • Thornton J, Striplin S, Liu GS, Swafford A, Stanley AW, Van Winkle DM, Downey JM (1990) Inhibition of protein synthesis does not block myocardial protection afforded by preconditioning. Am J Physiol 259:H1822–H1825

    PubMed  CAS  Google Scholar 

  • Tuijl M, van Berganen Henegouwen PM, van Wijk R, Verkleij AJ (1991) The isolated neonatal rat-cardiomyocyte used as an in vitro model for “iscemia”. II Induction of the 68 kDa heat shock protein. Biochim Biophys Acta 1091:278–284

    Article  PubMed  CAS  Google Scholar 

  • Van Winkle DM, Thornton J, Downey JM (1991) Cardioprotection from ischaemic preconditioning is lost following prolonged reperfusion in the rabbit. Coron Art Dis 2:613–619

    Google Scholar 

  • Walker D, Pasini E, Marber MS, Iliodromitis E, Ferrari R, Yellon DM (1993) Heat stress limits infarct size in the isolated rabbit heart. Cardiovasc Res 27:962–967

    Article  PubMed  CAS  Google Scholar 

  • Walker DM, Pasini E, Kucukoglu S, Marber MS, Iliodromitis E, Ferari R, Yellon DM (1993) Heat stress limits infarct size in the isolated perfused rabbit heart. Cardiovasc Res 27:962–967

    Article  PubMed  CAS  Google Scholar 

  • Wall SR, Fliss H, Korecky B. Role of catalase in myocardial protection against ischaemia in heat shocked rats. Mol Cell Biochem 1993 Dec 22;129(2):187–194

    Article  PubMed  CAS  Google Scholar 

  • White FP, White SR (1986) Isoproterenol induced myocardial necrosis is associated with stress protein synthesis in rat heart and thoracic aorta. Cardiovasc Res 20:512–515

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Hoshida S, Nishida M, Igarashi J, Aoki K, Hori M, Kuzuya T, Tada M (1997) Time course of tolerance to ischaemia-reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart. J Mol Cell Cardiol 29:1815–1821

    Article  PubMed  CAS  Google Scholar 

  • Yellon DM, Latchman DS (1991) Stress proteins and myocardial protection (editorial). Lancet 337:271–272

    Article  Google Scholar 

  • Yellon DM, Iliodromitis E, Latchman DS, Van Winkle DM, Downey JM, Williams FM, Williams TJ (1992) Whole body heat stress fails to limit infarct size in the reperfused rabbit heart. Cardiovasc Res 26:342–346

    Article  PubMed  CAS  Google Scholar 

  • Yellon DM, Latchman DS (1992) Stress proteins and myocardial protection. J Mol Cell Cardiol 24:113–124

    Article  PubMed  CAS  Google Scholar 

  • Yellon DM, Latchman DS, Marber MS (1993) Stress proteins-an endogenous route to myocardial protection: fact or fiction?. Cardiovasc Res 27:158–161

    Article  PubMed  CAS  Google Scholar 

  • Yellon DM, Pasini E, Cargnoni A, Marber MS, Latchman DS, Ferrari, R (1992) The protective role of heat stress in the ischaemic and reperfused rabbit myocardium. J Mol Cell Cardiol 24:895–907

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carroll, R., Yellon, D.M. (1999). Heat Stress Proteins and Their Relationship to Myocardial Protection. In: Latchman, D.S. (eds) Stress Proteins. Handbook of Experimental Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58259-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58259-2_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63519-9

  • Online ISBN: 978-3-642-58259-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics