Skip to main content

The Hydrodynamics of a DNA Molecule in a Flow Field

  • Chapter

Abstract

The behavior of dilute flexible polymer molecules in flowing liquids remains controversial, despite a long history of experimental and theoretical study. The simplest theory, introduced by Kuhn [1] some 60 years ago, treats the polymer as an elastic “dumbbell” in which an elastic spring connects two “beads” onto which are lumped the viscous drag forces that in reality act along the entire chain. In the simplest version of the dumbbell model, the drag force F d on each bead is given by Stokes law, F d = ςk B TV, where V is the velocity of the solvent relative to that of the bead, and the drag coefficient ςk B T is independent of the deformation of the molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuhn W (1934) Kolloid-Z 68: 2

    Article  CAS  Google Scholar 

  2. Peterlin A (1966) Pure Appl Chem 12: 563

    Article  CAS  Google Scholar 

  3. de Gennes PG (1974) J Chem Phys 60: 5030

    Article  Google Scholar 

  4. Hinch EJ (1974) Proc Symp Polym Lubrification, Brest

    Google Scholar 

  5. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, 2nd edn, vol 2. Wiley, New York

    Google Scholar 

  6. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, New York

    Google Scholar 

  7. Brochard-Wyart F (1993) Europhys Lett 23: 105

    Article  Google Scholar 

  8. Broachard-Wyart F (1995) Europhys Lett 30: 387

    Article  Google Scholar 

  9. Cerf RJ (1969) J Chim Phys 66: 479

    CAS  Google Scholar 

  10. Hinch EJ (1977) Phys Fluids 20: S22

    Article  CAS  Google Scholar 

  11. Phan Thien N, Manero O, Leal LG (1984) Rheol Acta 23: 151

    Article  Google Scholar 

  12. Dunlap PN, Leal LG (1987) J Non-Newt Fluid Mech 23: 5

    Article  CAS  Google Scholar 

  13. Armstrong RC, Gupta SK, Basaran O (1980) Polym Engng Sci 20: 466

    Article  CAS  Google Scholar 

  14. King DH, James DF (1983) J Chem Phys 78: 4749

    Article  CAS  Google Scholar 

  15. Perkins T, Smith D, Chu S (1994) Science 264: 819

    Article  CAS  Google Scholar 

  16. Perkins T, Smith D, Larson RG, Chu S (1995) Science 268: 83

    Article  CAS  Google Scholar 

  17. Smith SB, Finzi L, Bustamante C (1992) Science 258: 1122

    Article  CAS  Google Scholar 

  18. Vologodskii A (1994) Macromolecules 27: 5623

    Article  CAS  Google Scholar 

  19. Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265: 1599

    Article  CAS  Google Scholar 

  20. Larson RG, Perkins T, Smith D, Chu S (1997) Phys Rev E 55: 1794

    Article  CAS  Google Scholar 

  21. Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Press, New York

    Google Scholar 

  22. Eimer W, Pecora R (1991) J Chem Phys 94: 2324

    Article  CAS  Google Scholar 

  23. Pecora R (1991) Science 251: 893

    Article  CAS  Google Scholar 

  24. Smith DE, Perkins TT, Chu S (1995) Macromolecules 29: 1372

    Article  Google Scholar 

  25. Flory PJ (1969) Statistical mechanics of chain molecules. Carl Hanser Verlag, New York

    Google Scholar 

  26. Frenkel J (1944) Acta Physicochim URSS 19: 51–76

    CAS  Google Scholar 

  27. Ryskin G (1987) J Fluid Mech 178: 423

    Article  CAS  Google Scholar 

  28. Marko JF, Siggia ED (1995) Macromolecules 28: 8759

    Article  CAS  Google Scholar 

  29. Fixman M (1966) J Chem Phys 45: 785, 793

    Article  CAS  Google Scholar 

  30. Öttinger HC (1987) J Chem Phys 86: 3731

    Article  Google Scholar 

  31. Magda JJ, Larson RG, Mackay ME (1988) J Chem Phys 89: 2504

    Article  CAS  Google Scholar 

  32. Larson RG, Magda JJ (1989) Macromolecules 22: 3004

    Article  CAS  Google Scholar 

  33. Kishbaugh AJ, McHugh AJ (1990) J Non-Newt Fluid Mech 34: 181

    Article  CAS  Google Scholar 

  34. Magda JJ, Lee C-S, Muller SJ, Larson RG (1993) Macromolecules 26: 1696

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larson, R.G., Perkins, T.T., Smith, D.E., Chu, S. (1999). The Hydrodynamics of a DNA Molecule in a Flow Field. In: Nguyen, T.Q., Kausch, HH. (eds) Flexible Polymer Chains in Elongational Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58252-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58252-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63515-1

  • Online ISBN: 978-3-642-58252-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics