Skip to main content

Single Polymers in Elongational Flows: Dynamic, Steady-State, and Population-Averaged Properties

  • Chapter

Abstract

The behavior of dilute polymers in an elongational flow has been an outstanding problem in polymer science for several decades [1-3]. In these flows, a velocity gradient along the direction of flow can stretch polymers far from equilibrium. Extended polymers exert a force back on the solvent leading to the important, non-Newtonian properties of dilute polymer solutions such as viscosity enhancement and turbulent drag reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Gennes PG (1974) J Chem Phys 60: 5030

    Article  Google Scholar 

  2. Larson RG (1988) Constitutive equations for polymer melts and solution. Buttersworths, New York

    Google Scholar 

  3. Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, 2nd edn, vol 2. Wiley, New York

    Google Scholar 

  4. Larson RG, Magda JJ (1989) Macromolecules 22: 3004

    Article  CAS  Google Scholar 

  5. Keller A, Odell JA (1985) Coll & Polym Sci 263: 181

    Article  CAS  Google Scholar 

  6. Fuller GG, Leal LG (1980) Rheol Acta 19: 580–600

    Article  CAS  Google Scholar 

  7. Cathey CA, Fuller GG (1990) J Non-Newtonian Fluid Mech 34: 63–88

    Article  CAS  Google Scholar 

  8. Dunlap PN, Leal LG (1987) J Non-Newtonian Fluid Mech 23: 5–48

    Article  CAS  Google Scholar 

  9. Atkins EDT, Taylor MA (1992) Biopolymers 32: 911–23

    Article  CAS  Google Scholar 

  10. Odell JA, Keller A, Rabin Y (1988) J Chem Phys 88: 4022–4028

    Article  CAS  Google Scholar 

  11. Odell JA, Keller A, Muller AJ (1992) Coll & Polym Sci 270: 307–324

    Article  CAS  Google Scholar 

  12. Odell JA, Taylor MA (1994) Biopolymers 34: 1483–1493

    Article  CAS  Google Scholar 

  13. Menasveta MJ, Hoagland D (1991) Macromolecules 24: 3427–3433

    Article  CAS  Google Scholar 

  14. Smith KA, Merrill EW, Peebles LH, Banijamali SH (1975) Colloq Int C.N.R.S. 233: 341

    Google Scholar 

  15. Lumley JL (1977) Phys Fluids 20: 64

    Article  Google Scholar 

  16. Nguyen TQ, Yu G, Kausch H-H (1995) Macromolecules 28: 4851–4860

    Article  CAS  Google Scholar 

  17. James DF, Saringer JH (1980) J Fluid Mech 97: 655–671

    Article  CAS  Google Scholar 

  18. Tirtaatmadja V, Sridhar T (1993) J Rheol 37: 1081–1102

    Article  CAS  Google Scholar 

  19. James DF, Sridhar T (1995) J Rheol 39: 713–724

    Article  CAS  Google Scholar 

  20. Spiegelberg SH, McKinely GH (1996) J Non-Newtonian Fluid Mech 67: 49–76

    Article  CAS  Google Scholar 

  21. Orr NV, Sridhar T (1996) J Non-Newtonian Fluid Mech 67: 77–103

    Article  CAS  Google Scholar 

  22. Hinch EJ (1994) J Non-Newtonian Fluid Mech 54: 209–230

    Article  CAS  Google Scholar 

  23. Perkins TT, Smith DE, Chu S (1997) Science 276: 2016–2021

    Article  CAS  Google Scholar 

  24. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Optics Lett 11: 288–290

    Article  CAS  Google Scholar 

  25. Chu S (1991) Science 253: 861–866

    Article  CAS  Google Scholar 

  26. Perkins TT, Smith DE, Chu S (1994) Science 264: 819–822

    Article  CAS  Google Scholar 

  27. Perkins TT, Quake SR, Smith DE, Chu S (1994) Science 264: 822–826

    Article  CAS  Google Scholar 

  28. Perkins TT, Smith DE, Larson RG, Chu S (1995) Science 168: 83–87

    Article  Google Scholar 

  29. Crocker JC, Grier DG (1994) Phys Rev Lett 73: 352–355

    Article  CAS  Google Scholar 

  30. Finer JT, Simmons RM, Spudich JA (1994) Nature 368: 1134–1139

    Article  Google Scholar 

  31. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Nature 721–727

    Google Scholar 

  32. Yin H et al. (1995) Science 270: 1653–1657

    Article  CAS  Google Scholar 

  33. Smith SB, Finzi L, Bustamante C (1992) Science 258: 1122–1126

    Article  CAS  Google Scholar 

  34. Smith SB, Aldridge PK, Callis JB (1989) Science 243: 203–206

    Article  CAS  Google Scholar 

  35. Schwartz DC, Koval M (1989) Nature 338: 520–522

    Article  CAS  Google Scholar 

  36. Volkmuth WD, Austin RH (1992) Nature 358: 600–602

    Article  CAS  Google Scholar 

  37. Volkmuth WD, Duke T, Wu MC, Austin RH (1994) Phys Rev Lett 72: 2117–2120

    Article  CAS  Google Scholar 

  38. Mitnik L, Heller C, Prost J, Viovy JL (1995) Science 267: 219–222

    Article  CAS  Google Scholar 

  39. Dinsmore AD, Yodh AG, Pine DJ (1996) Nature 383: 239–242

    Article  CAS  Google Scholar 

  40. Hagerman PJ (1988) Annual review of biophysics and biophysical chemistry 17: 265–286

    Article  CAS  Google Scholar 

  41. Eimer W, Pecora R (1991) J Chem Phys 94: 2324–2329

    Article  CAS  Google Scholar 

  42. Pecora R (1991) Science 251: 893–898

    Article  CAS  Google Scholar 

  43. de Gennes PG (1979) Scaling concepts in polymer physics (Cornell University Press, Ithica)

    Google Scholar 

  44. Doi M, Edwards SE (1986) The theory of polymer dynamics (Oxford Press, New York)

    Google Scholar 

  45. Smith DE, Perkins TT, Chu S (1995) Macromolecules 29: 1372–1373

    Article  Google Scholar 

  46. Crothers DM, Zimm BH (1965) J Mol Biol 12: 525

    Article  CAS  Google Scholar 

  47. Callis PR, Davidson N (1969) Biopolymers 8: 379–390

    Article  CAS  Google Scholar 

  48. Klotz LC, Zimm BH (1972) J Mol Biol 72: 779–800

    Article  CAS  Google Scholar 

  49. Schmitz KS, Pecora R (1975) Biopolymers 14: 521–542

    Article  CAS  Google Scholar 

  50. Musti R, Sikorav J-L, Lairex D, Jannink G, Adam M (1995) Comptes Rendus De L’Académie des Sciences Series II 352: 599–605

    Google Scholar 

  51. Larson RG, Perkins TT, Smith DE, Chu S (1997) Phys Rev E55: 1794–1797

    Google Scholar 

  52. Bustamante C, Marko JF, Siggia ED, Smith SB (1994) Science 265: 1599–1600

    Article  CAS  Google Scholar 

  53. Marko JF, Siggia ED (1995) Macromolecules 28: 8759–8770

    Article  CAS  Google Scholar 

  54. Quake SR, Babcock HP, Chu S (1997) Nature 388: 151–154

    Article  CAS  Google Scholar 

  55. Zimm BH (1998) Macromolecules 31: 6089–6098

    Article  CAS  Google Scholar 

  56. Vologodskii A (1994) Macromolecules 27: 5623–5625

    Article  CAS  Google Scholar 

  57. Kas J et al. (1996) Biophys J 70: 609–625

    Article  CAS  Google Scholar 

  58. Matsumoto S, Morikawa K, Yanigida M (1981) J Mol Biol 110: 501

    Article  Google Scholar 

  59. Morikawa K, Yanigida M (1981) J Biochem 89: 693–696

    CAS  Google Scholar 

  60. Wallis G, Pomerantz D (1969) J Appl Phys 40: 3946–3949

    Article  CAS  Google Scholar 

  61. Hu C, Kim S (1976) Appl Phys Lett 29: 582–585

    Article  CAS  Google Scholar 

  62. Petersen KE (1982) Proceedings of the IEEE 70: 420–457

    Article  CAS  Google Scholar 

  63. Rye HS, Dabora JM, Quesada MA, Mathies RA, Glazser AN (1993) Anal Biochem 208: 144–150

    Article  CAS  Google Scholar 

  64. Thompson DS, Gill SJ (1967) J Chem Phys 47: 5008–5017

    Article  CAS  Google Scholar 

  65. Magda JJ, Larson RG, Mackay ME (1988) J Chem Phys 89: 2504–2513

    Article  CAS  Google Scholar 

  66. Daoudi S, Brochard F (1978) Macromolecules 11: 751–758

    Article  CAS  Google Scholar 

  67. de Gennes PG (1986) Physica 140A: 9–25

    Google Scholar 

  68. Hinch EJ (1977) Phys Fluids 20: 522

    Article  Google Scholar 

  69. Rallison JM (1997) J Non-Newtonian Fluid Mech 68: 61–83

    Article  CAS  Google Scholar 

  70. Doyle PS, Shaqfeh ESG, Gast AP (1997) J Fluid Mech 334: 251–291

    Article  CAS  Google Scholar 

  71. Ryskin G (1987) Phys Rev Lett 59: 2059–2062

    Article  CAS  Google Scholar 

  72. Ryskin G (1987) J Fluid Mech 178: 423–449

    Article  CAS  Google Scholar 

  73. Larson RG (1990) Rheol Acta 29: 371–384

    Article  CAS  Google Scholar 

  74. King DH, James DF (1983) J Chem Phys 78: 4749–4754

    Article  CAS  Google Scholar 

  75. Carrington SP, Odell JA (1996) J Non-Newtonian Fluid Mech 67: 269–283

    Article  CAS  Google Scholar 

  76. Rabin Y (1988) J Non-Newtonian Fluid Mech 30: 119–123

    Article  CAS  Google Scholar 

  77. Bensimon D, Simon AJ, Croquette V, Bensimon A (1995) Phys Rev Lett 74: 4754–4757

    Article  CAS  Google Scholar 

  78. Cluzel P et al. (1996) Science 271: 792–794

    Article  CAS  Google Scholar 

  79. Smith SB, Cui Y, Bustamante C (1996) Science 271: 795–799

    Article  CAS  Google Scholar 

  80. Tirtaatmadja V, Sridhar T (1995) J Rheol 39: 1133–1160

    Article  CAS  Google Scholar 

  81. Zimm BH (1956) J Chem Phys 24: 269–278

    Article  CAS  Google Scholar 

  82. Rouse PE (1953) J Chem Phys 21: 1272

    Article  CAS  Google Scholar 

  83. de Gennes PG (1971) J Chem Phys 55: 572–579

    Article  Google Scholar 

  84. Peterlin A (1961) Makro Chem 44

    Google Scholar 

  85. Keunings R (1997) J Non-Newtonian Fluid Mech 68: 85–100

    Article  CAS  Google Scholar 

  86. Smith DE, Perkins TT, Chu S (1996) Macromolecules 29: 1372–1373

    Article  CAS  Google Scholar 

  87. Seifert U, Wintz W, Nelson P (1996) Phys Rev Lett 77: 5289–5292

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perkins, T.T., Smith, D.E., Chu, S. (1999). Single Polymers in Elongational Flows: Dynamic, Steady-State, and Population-Averaged Properties. In: Nguyen, T.Q., Kausch, HH. (eds) Flexible Polymer Chains in Elongational Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58252-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58252-3_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63515-1

  • Online ISBN: 978-3-642-58252-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics