Skip to main content

Testing for Antimodes

  • Chapter
Data Analysis

Abstract

To determine the number of modes in a one dimensional distribution, we compute for each m the Kolmogorov distance between the empirical distribution \({D_m} = {\text{in}}{{\text{f}}_{F \in {u_m}}}{\text{ su}}{{\text{p}}_x}\left| {{F_n}\left( x \right) - F\left( x \right)} \right|\) F n , and a distribution FU m ,the set of uniform mixtures with at most m modes. The m — 1 antimodes obtained in the best fitting m—modal distributions, collected for all m,form a hierarchical tree of intervals. To decide which of these empirical antimodes corresponds to an antimode in the true distribution, we define a test statistic based on a ‘shoulder interval’, a maximal interval of constant density that is neither a mode nor an antimode, in a best fitting m-modal uniform mixture. For each empirical antimode, there is a shoulder interval of minimum length including it, and the points in this shoulder interval are taken as a reference set for evaluating the antimode. The statistic is the maximum deviation of the empirical distribution from a monotone density fit in the shoulder interval, and the reference distribution for it is the maximum empirical excursion for a sample from the uniform with the same sample size as the number of points in the shoulder interval. We demonstrate that this reference distribution gives approximately valid significance tests for a range of population distributions, including some with several modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CHENG, M-Y. and HALL, P. (1999): Mode testing in difficult cases. Annals of Statistics, 27 1294–1315

    Article  Google Scholar 

  • BIRNBAUM, Z.W. (1952): Numerical Tabulation of the distribution of Kolmogorov’s statistic for finite sample size. Journal of the American Statistical Association, 47 425–441

    Article  Google Scholar 

  • BOCK, H.H. (1996): Probability models and hypotheses testing in partitioning cluster analysis. In: Ph. Arabie, L. Hubert, G. De Soete (eds.) Clustering and classification. World Science Publishers, River Edge/NJ, 377–453.

    Chapter  Google Scholar 

  • HARTIGAN, J.A. and HARTIGAN, P.M. (1985): The dip test of unimodality Annals of Statistics, 13 70–84

    Article  Google Scholar 

  • HARTIGAN, J.A. (1987): Estimation of a convex density contour in two dimensions. Journal of the American Statistical Association, 82 267–270

    Article  Google Scholar 

  • IZENMAN, A.J. and SOMMER, C.J. (1988): Philatelic mixtures and multimodal densities. Journal of the American Statistical Association, 83 941–953

    Article  Google Scholar 

  • KENNEDY, D.P. (1976): The distribution of the Maximum Brownian Excursion. Journal of Applied Probability, 13 371–376.

    Article  Google Scholar 

  • KOMLOS, J., MAJOR, P. and TUSNADY, G. (1975): An approximation of partial sums of independent random variables, and the sample DF. I. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 32 111–131

    Article  Google Scholar 

  • MAMMEN, E., MARRON, J.S. and FISHER, N.I. (1992):. Some asymptotics for multimodality tests based on kernel density estimates. it Probability Theory and Related Fields, 91 115–132.

    Article  Google Scholar 

  • MINOTTE, M.C. and SCOTT, D.W. (1992): The mode tree: a tool for visualisation of nonparametric density features. Journal of Computational Graphics and Statistics, 2 51–68

    Google Scholar 

  • MULLER, D.W. and SAWITZKI, G. (1987): Using excess mass estimates to investigate the modality of a distribution. Preprint no 938, Universitat Heidelberg, Sonderforschungsbereich 123 Stochastiche Mathematische Modelle.

    Google Scholar 

  • MULLER, D.W. and SAWITZKI, G. (1991): Excess mass estimates and tests for multimodality. Journal of the American Statistical Association, 86 738–746

    Google Scholar 

  • SILVERMAN, B.W. (1981): Using kernel density estimates to investigate multi-modality. J. Roy. Stat. Soc. B., 43 97–99

    Google Scholar 

  • Silverman, B.W.(1983): Some properties of a test for multimodality based on kernel density estimates. In: J.F.C.Kingman and G.E.H.Reuter(eds.) Probability, Statistics, and Analysis.Cambridge University Press, Cambridge, U.K., 248–259.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hartigan, J.A. (2000). Testing for Antimodes. In: Gaul, W., Opitz, O., Schader, M. (eds) Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58250-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58250-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67731-4

  • Online ISBN: 978-3-642-58250-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics