Skip to main content

Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review

  • Chapter
The Riccati Equation

Part of the book series: Communications and Control Engineering Series ((CCE))

Abstract

This review is concerned with two algebraic Riccati equations. The first is a quadratic matrix equation for an unknown n × n matrix X of the form

$$XDX + XA + A*X - C = 0,$$
(2.1)

where A, D, C are n × n complex matrices with C and D hermitian. Further hypotheses are imposed as required, although Section 2.3 contains some discussion of more general non-symmetric quadratic equations. The second equation has the fractional form

$$X = A*XA + Q - (C + B*XA)*{(R + B*XB)^{ - 1}}(C + B*XA),$$
(2.2)

where R and Q are hermitian m × m and n × n matrices, respectively, and A, B, C are complex matrices with respective sizes n × n, n × m, and m × n. The two equations are frequently referred to as the “continuous” and “discrete” Riccati equations, respectively, because they arise in physical optimal control problems in which the time is treated as a continuous variable, or a discrete variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SINGER, M.A. and HAMMARLING, S.J., The algebraic Riccati equation: a summary review of some available results. Nat. Phys. Lab. Report DITC 23/83, 1983.

    Google Scholar 

  2. Shayman, M., Geometry of the algebraic Riccati equation, Parts I and II, SIAM J. Control Optim. 21(1983), 375–394 and 395-409.

    Article  MathSciNet  Google Scholar 

  3. Gohberg, I., Lancaster, P., and Rodman, L., Matrices and Indefinite Scalar Products, Birkhäuser Verlag, Basel, 1983.

    MATH  Google Scholar 

  4. Ran, A.C.M. and Rodman, L., The algebraic matrix Riccati equation. Operator Theory: Advances & Applications, Vol. 12 (pp. 351–381). Birkhauser, Basel, 1984.

    Google Scholar 

  5. Ando, T., Matrix Quadratic Equations, Hokkaido University, Sapporo, Japan, 1988.

    MATH  Google Scholar 

  6. Dorato, P., Theoretical developments in discrete-time control, Automatica 19(1983), 395–400.

    Article  MathSciNet  MATH  Google Scholar 

  7. Willems, J.C., Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans. Automat Control AC-16(1971), 621–634.

    Article  MathSciNet  Google Scholar 

  8. Coppel, W.A., Matrix quadratic equations. Bull. Austral. Math. Soc. 10(1974), 377–401.

    Article  MathSciNet  MATH  Google Scholar 

  9. Potter, J.E., Matrix quadratic solutions. SIAM J. Appl. Math. 14(1966), 496–501.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kucera, V., A contribution to matrix quadratic equations, IEEE Trans. Automat. Control 17(1972), 344–347.

    Article  MathSciNet  MATH  Google Scholar 

  11. Lancaster, P. and Rodman, L., Existence and uniqueness theorems for algebraic Riccati equations, Internat J. Control 32(1980), 285–309.

    Article  MathSciNet  MATH  Google Scholar 

  12. Curilov, A.N., The frequency theorem and the Lur’e equation, Sibirsk. Mat. Z. 20(1979), 600–611 (in Russian).

    Article  MathSciNet  Google Scholar 

  13. GOHBERG, I. and RUBINSTEIN, S., Proper contractions and their unitary minimal completions, Operator Theory: Advances and Applications 33(1988), 233–247.

    MathSciNet  Google Scholar 

  14. Anderson, B.D.O. and Vongpanitlerd, S., Network Analysis and Synthesis, Prentice-Hall, Englewood Cliffs, NJ, 1973.

    Google Scholar 

  15. Bender, D.J. and Laub, A.J., The linear-quadratic optimal regulator problem for descriptor systems, IEEE Trans. Automat. Control, AC-32(1987), 672–688.

    Article  MathSciNet  Google Scholar 

  16. Bender, D.J. and Laub, A.J., The linear-quadratic optimal regulator problem for descriptor systems: Discrete-time case, Automatica 23(1987) pp, 71–85.

    Article  MathSciNet  MATH  Google Scholar 

  17. MEHRMANN, V., The Linear-Quadratic Control Problem, Habilitationsschrift, University of Bielefeld, 1988.

    Google Scholar 

  18. Mehrmann, V., A symplectic orthogonal method for single input or single output discrete time optimal quadratic control problems, SIAM J. Matrix Anal. Appl. 9(1988), 221–247.

    Article  MathSciNet  MATH  Google Scholar 

  19. Lancaster, P. and Tismenetsky, M., The Theory of Matrices (second edition) with Applications, Academic Press, Orlando, 1985.

    Google Scholar 

  20. GOHBERG, I., LANCASTER, P., and RODMAN, L., Invariant Subspaces of Matrices with Applications, J. Wiley, 1986.

    Google Scholar 

  21. Hautus, M.L.J., Controllability and observability conditions of linear autonomous systems, Ned. Akad. Wet. Proa, Ser. A 12(1969), 443–448.

    MathSciNet  Google Scholar 

  22. Wonham, W.M., Linear Multivariable Control, Springer-Verlag, Berlin, 1970 and 1979.

    Google Scholar 

  23. Ran, A.C.M. and Rodman, L., Stability of invariant maximal semidefinite subspaces II, Applications: selfadjoint rational matrix functions, algebraic Riccati equation, Linear Algebra and Appl. 63(1984), 133–173.

    Article  MathSciNet  MATH  Google Scholar 

  24. Paige, C. and van Loan, C., A Schur decomposition for Hamiltonian matrices, Linear Algebra and Appl. 41(1981) 11–32.

    Article  MathSciNet  MATH  Google Scholar 

  25. Faibusovich, L.E., Algebraic Riccati equation and symplectic algebra, Internat. J. Control 43(1986), 781–792.

    Article  MathSciNet  MATH  Google Scholar 

  26. Ran, A.C.M. and Rodman, L., Stability of invariant maximal semidefinite subspaces I, Linear Algebra and Appl. 62(1984) 51–86.

    Article  MathSciNet  MATH  Google Scholar 

  27. Gohberg, I., Lancaster, P., and Rodman, L., On hermitian solutions of the symmetric algebraic Riccati equations, SIAM J. Control Optim. 24(1986), 1323–1334.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kleinman, D.L., On an iterative technique for Riccati equation computation, IEEE Trans. Automat. Control 13(1968), 114–115.

    Article  Google Scholar 

  29. Wimmer, H.K., Monotonicity of maximal solutions of algebraic Riccali equations, Systems and Control Letters 5(1985), 317–319.

    Article  MathSciNet  MATH  Google Scholar 

  30. Ran, A.C.M. and Vreugdenhil, R., Existence and comparison theorems for algebraic Riccati equations for continuous-and discrete-time systems, Linear Algebra and Appl. 99(1988) 63–83.

    Article  MathSciNet  MATH  Google Scholar 

  31. DELCHAMPS, D.F., A note on the analyticity of the Riccati metric, in: Lectures in Applied Mathematics, Vol. 18(eds. C.I. Byrnes and C.F. Martin), pp. 37–41, AMS, Providence, RI, 1980.

    Google Scholar 

  32. DELCHAMPS, D.F., Analytic stabilization and the algebraic Riccati equation, Proc. of the 22nd IEEE Conference on Decision and Control 1983, pp. 1396–1401.

    Google Scholar 

  33. Delchamps, D.F., Analytic feedback control and the algebraic Riccati equation, IEEE Trans. Automat. Control 29(1984), 1032–1033.

    Article  Google Scholar 

  34. Kamen, E.W. and Khargonekar, P.P., On the control of linear systems whose coefficients are functions of parameters, IEEE Trans. Automat. Control 29(1984) 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  35. Ran, A.C.M. and Rodman, L., On parameter dependence of solutions of algebraic Riccati equations, Math. of Control, Signals and Systems 1(1988), 269–284.

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodman, L., On extremal solutions of the algebraic Riccati equation, in: Lectures in Applied Mathematics, Vol. 18 (eds. C.I. Byrnes and C.F. Martin), pp. 311–327, AMS, Providence, RI, 1980.

    Google Scholar 

  37. RAN, A.C.M. and RODMAN, L., Stability of invariant lagrangian subspaces II, Operator Theory: Advances and Applications 40(1989) (eds. H. Dym, S. Goldberg, M.A. Kaashoek, P. Lancaster), pp. 391–425.

    Google Scholar 

  38. Polderman, J.W., A note on the structure of two subsets of the parameter space in adaptive control problems, Systems and Control Letters 7(1986) 25–34.

    Article  MathSciNet  MATH  Google Scholar 

  39. Baumgartel, H., Analytic perturbation theory for matrices and operators (Operator Theory: Advances and Applications, Vol. 15), Birkhäuser, Basel, 1985.

    Google Scholar 

  40. Bart, H., Gohberg, I., and Kaashoek, MA., Minimal factorizations of matrix and operator functions, Birkhäuser Verlag, Basel, 1979.

    Google Scholar 

  41. Belevitch, V., Classical Network Theory, San Francisco-Cambridge-Amsterdam, Holden Day, 1968.

    MATH  Google Scholar 

  42. Kailath, T., Linear Systems, Prentice Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  43. Ran, A.C.M., Minimal factorization of self-adjoint rational matrix functions, Integral Equations and Operator Theory 5(1982), 850–869.

    Article  MathSciNet  MATH  Google Scholar 

  44. Redheffer, R.M., On a certain linear fractional transformation, J. Mathematical Phys. 39(1960), 260–286.

    MathSciNet  Google Scholar 

  45. DEWILDE, P., Input-output descriptions of roomy systems, SIAM J. Control and Optim. 14(4)(1976), 712–736.

    Article  MathSciNet  MATH  Google Scholar 

  46. BALL, J.A. and COHEN, N., Sensitivity minimization in an H norm: Parametrization of all suboptimal solutions, Intern. J. of Control 46(1987), 785–816.

    Article  MathSciNet  MATH  Google Scholar 

  47. LIMEBEER, D.J.N. and HALIKIAS, G.D., A controller degree bound for H -optimal control problems of the second kind, SIAM J. Control Optim. 26(1988), 646–677.

    Article  MathSciNet  MATH  Google Scholar 

  48. GLOVER, K., GREEN, M., LIMEBEER, D., and DOYLE, J., A J-spectral factorization approach of H control, preprint.

    Google Scholar 

  49. DOYLE, J.C., GLOVER, K., KHARGONEKAR, P.P. and FRANCIS, F., State-space solutions to standard H 2 and H control problems, IEEE Trans. Automat Control 34(1989), 831–347.

    Article  MathSciNet  MATH  Google Scholar 

  50. Djokovic, D.Z., Patera, J., Winternitz, P., and Zassenhaus, H., Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 24(1983), 1363–1374.

    Article  MathSciNet  MATH  Google Scholar 

  51. THOMPSON, R.C., Pencils of complex and real symmetric and skew matrices, unpublished notes.

    Google Scholar 

  52. RAN, A.C.M. and RODMAN, L., Stable invariant lagrangian subspaces: Factorization of symmetric rational matrix functions and other applications, to appear in Linear Algebra and Appl.

    Google Scholar 

  53. RAN, A.C.M. and RODMAN, L., Stability of invariant lagrangian subspaces I, Operator Theory: Advances and Applications 32(1988), 181–218.

    MathSciNet  Google Scholar 

  54. Anderson, B.D.O. and Moore, J.B., Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.

    MATH  Google Scholar 

  55. VAUGHAN, D.R., A nonrecursive algebraic solution for the discrete Riccati equation, IEEE Trans. Automat. Control 15(1970), 597–599.

    Article  Google Scholar 

  56. KUčERA, V., The discrete Riccati eqution of optimal control, Kybernetika 8(1972), 430–447.

    MathSciNet  MATH  Google Scholar 

  57. DORATO, P. and LEVIS, A.H., Optimal linear regulators: the discrete-time case. IEEE Trans. Automat. Control 16(1971), 613–620.

    Article  MathSciNet  Google Scholar 

  58. MOLINARI, B.P., The stabilizing solution of the algebraic Riccati equation, SIAM J. Control 11(1973), 262–271.

    Article  MathSciNet  MATH  Google Scholar 

  59. MOLINARI, B.P., The stabilizing solution of the discrete algebraic Riccati equation, IEEE Trans. Automat. Control 20(1975), 396–399.

    Article  MathSciNet  MATH  Google Scholar 

  60. LANCASTER, P., RAN, A.C.M., and RODMAN, L., Hermitian solutions of the discrete algebraic Riccati equation, Internat. J. Control 44(1986), 777–802.

    Article  MathSciNet  MATH  Google Scholar 

  61. HEWER, G.A., An iterative technique for the computation of steady-state gains for the discrete optimal regulator, IEEE Trans. Automat. Control 16(1971), 382–383.

    Article  Google Scholar 

  62. PAPPAS, T., LAUB, A.J., and SANDELL, N.R., On the numerical solution of the discretetime algebraic Riccati equations, IEEE Trans. Automat Control 25(1980), 631–641.

    Article  MathSciNet  MATH  Google Scholar 

  63. LANCASTER, P., RAN, A.C.M., and RODMAN, L., An existence and monotonicity theorem for the discrete algebraic Riccati equation, Linear and Multilinear Algebra 20(1987), 353–361.

    Article  MathSciNet  MATH  Google Scholar 

  64. WONHAM, W.M., On a matrix Riccati equation of stochastic control, SIAM J. Control 6(1968), 681–697.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lancaster, P., Rodman, L. (1991). Solutions of the Continuous and Discrete Time Algebraic Riccati Equations: A Review. In: Bittanti, S., Laub, A.J., Willems, J.C. (eds) The Riccati Equation. Communications and Control Engineering Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58223-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58223-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63508-3

  • Online ISBN: 978-3-642-58223-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics