Skip to main content

Integration of Design Optimization in Finite Element Analysis

  • Conference paper
CAD/CAM Robotics and Factories of the Future ’90
  • 262 Accesses

Abstract

Finite Element analysis is the most widely used computer based analysis method. Design optimization algorithms recently integrated into finite element analysis programs provide iteration capabilities not available with manual methods. In the automated optimization, the model is created and the loads are specified. Optimal characteristics such as weight, shape and design are selected. The optimization program checks the design and updates the model until it converges on a best solution to meet the optimal characteristics and design criteria. This paper reviews the optimization algorithms currently used in design optimization for weight, shape, and structural response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schmit, L. A., ‘Structural Design by Systematic Synthesis, proceedings, 2nd Conference on Electronic Computation, ASCE, New York, 1960, pp. 105–122.

    Google Scholar 

  2. Sheu, C. Y., and Prager, W., ‘Recent Developments in Optimal Structural Design,’ Applied Mechanics Rev., Vol. 21, No. 10, 1968, pp. 985–992.

    Google Scholar 

  3. Berke, L., and Venkayya, V. B., ‘Review of Optimality Criteria Approaches to Structural Optimization, Structural Optimization Symposium, AMD, Vol. 7, ASME, New York, 1974, pp. 23–34.

    Google Scholar 

  4. Hang, E. J., and Arora, J. S., Applied Optimal Design, John Wiley and Sons, New York, 1979.

    Google Scholar 

  5. Schmit, L. A., Kicher, T. P., and Morrow, W. M., ‘Structural Synthesis Capability for Integrally Stiffened Waffle Plates, AIAA J., Vol. 1, No. 1, 1963, pp. 2820–2836.

    Article  Google Scholar 

  6. Kicher, T. P., ‘Structural Synthesis of Integrally Stiffened Cylinder,’ J. Spacecraft and Rockets, Vol. 5, No. 1, 1968, pp. 62–67.

    Article  Google Scholar 

  7. Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design, McGraw-Hill Book Company, 1984.

    Google Scholar 

  8. Berke, L., and Khot, N. S., ‘Use of Optimality Criteria Methods for Large Scale Systems,’ AGARD Lecture series, No. 70, on Structural Optimization, AGARD-LS-70, 1974.

    Google Scholar 

  9. Atrek, E., Gallager, R. H., Ragsdell, K. M., and Zienkiewicz, O. C., New Directions in Optimum Structural Design, John Wiley and Sons, 1984.

    Google Scholar 

  10. Fox, R. L., and Kapoor, M. P., ‘Rates of Change of Eigenvalues and Eigenvectors,’ AIAA J., Vol. 6, No. 1, pp. 2426–2429.

    Google Scholar 

  11. Khot, N. S., Berke, L., and Venkayya, V. B., ‘Comparisons of Optimality Criteria Algorithms for Minimum Weigth Design of Structures,’ AIAA J., Vol. 19, No. 2, 1979, pp. 182–190.

    Article  MathSciNet  Google Scholar 

  12. Dobbs, M. W., and Nelson, R. B., ‘Application of Optimality Criteria to Automated Structural Design,’ AIAA J., Vol. 14, No. 1, 1976, pp. 1436–1443.

    Article  Google Scholar 

  13. Tada, Y., and Seguchi, Y., ‘Shape Determination of Strucures Based on the Inverse Variational Principle/The Finite Element Approach,’ New Directions in Structural Design, Edited by E. Atrek, R. H. Gallager, K. M. Ragsdell, and O. C. Zienkiewicz, John Wiley and Sons, 1984, pp. 197–209.

    Google Scholar 

  14. Banichuk, N. V., ‘Application of Perturbation Method to Optimal Design of Structures,’ New Directions in Structural Design, Edited by E. Atrek, R. H. Gallager, K. M. Ragsdell, and 0. C. Zienkiewicz, John Wiley and Sons, 1984, pp. 231–248.

    Google Scholar 

  15. Turner, M. H., ‘Design of Minimum-Mass Structures with Specified Natural Frequencies,’ AIAA J., Vol. 5, No. 11, 1967, pp. 406–412.

    MATH  Google Scholar 

  16. Yamakawa, H., ‘Optimum Structural Designs for Dynamic Response, New Directions in Structural Design, Edited by E. Atrek, R. H. Gallager, K. M. Ragsdell, and O. C. Zienkiewicz, John Wiley and Sons, 1984, pp. 249–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barez, F. (1991). Integration of Design Optimization in Finite Element Analysis. In: Dwivedi, S.N., Verma, A.K., Sneckenberger, J.E. (eds) CAD/CAM Robotics and Factories of the Future ’90. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58214-1_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58214-1_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63504-5

  • Online ISBN: 978-3-642-58214-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics