Skip to main content

A New Approach to the Solution of Neurological Models: Application to the Hodgkin-Huxley and the Fitzhugh-Nagumo Equations

  • Conference paper
Stochastic Processes and their Applications

Abstract

The solution of the Hodgkin-Huxley and the Fitzhugh-Nagumo equations are demonstrated as applications of the decomposition method [1–3] which can be used as a new and useful approach obtaining analytical and physically realistic solutions to neurological models and other biological problems without perturbation, linearization, discretization, or massive computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, New York,1986.

    Google Scholar 

  2. G. Adomian, Stochastic Systems, Academic Press, NY, 1983.

    Book  Google Scholar 

  3. G. Adomian, Applications of Nonlinear Stochastic Systems Theory to physics, Kluwer, Amsterdam, 1988.

    Google Scholar 

  4. M.V. Mascagni, Numerical methods for neuronal modeling,(in) Methods in Neuronal Modeling: From Synapses To Networks, (eds.) C. Koch and I. Segev MIT Press, Cambridge, MA 1989.

    Google Scholar 

  5. H. Tuckwell, Stochastic processes in the neurosciences, Lecture Notes for NSF-CBMS Regional Conference, North Carolina State University, Raleigh NC 23–27 June 1986.

    Google Scholar 

  6. R. Rach, A Convenient computational form for the Adomian polynomials, J.Math Anal, and Applic., 102 (1984) 415–419.

    Article  Google Scholar 

  7. G. Adomian, Solution of nonlinear stochastic physical problems, Rendiconti del Seminario Mathematico, Stochastic Problems in Mechanics, Torino, Italy, 1982.

    Google Scholar 

  8. G. Adomian and G.E. Adomian, Cellular systems and aging models, Advances in Hyperbolic Partial Differential Equations-2, Pergamon Press, NY, 1985.

    Google Scholar 

  9. G. Adomian, G. E. Adomian, and R. E. Bellman, Biological system interactions, Proc. Nat. Acad. Sci., 81, 1984.

    Google Scholar 

  10. G. Adomian and G.E. Adomian, Solution of the Marchuk model of infectious disease and immune response, Advances in Mathematics and Computers in Medicine-2, Pergamon Press, NY, 1986.

    Google Scholar 

  11. C. Koch and I. Segev (EDS.), Methods In Neuronal Modeling, MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  12. P.D. Wasserman, Neural Computing: Theory And Practice, Van Nostrand, New York, 1989.

    Google Scholar 

  13. J. Cronin, Mathematical Aspects Of Hodgkin-Huxley Theory, Cambridge University Press, Cambridge, England, 1987.

    Book  Google Scholar 

  14. G.F. Roach (ED.), Mathematics In Medicine And Biomechanics, Birkhauser-Boston, Cambridge, MA, 1984.

    Google Scholar 

  15. B. Bunow, I. Segev, and J.W. Fleshman, Modeling the electrical properties of anatomically complex neurons using a network analysis program: Excitable membrane, Biol. Cyber., 53 (1985) 41–56.

    Article  Google Scholar 

  16. N.T. Carnevale and F.J. Lebeda, Numerical analysis of electrotonus in multicompartmental neuron models, J. Neurosci. Meth., 19 (1987) 69–87.

    Article  Google Scholar 

  17. P.S. Churchland, C. Koch, and T. J. Sejnowski, What is computational neuroscience?, (in) Computational Neuroscience (ed.) E. Schwartz, MIT Press, Cambridge, MA, 1989.

    Google Scholar 

  18. J.W. Cooley and F.A. Dodge, Digital computer simulation of excitation and propagation of the nerve impulse, Biophys, J., 6 (1966) 583–599.

    Article  Google Scholar 

  19. E. Deschutter, Alternative equations for molluscanion currents described by Connor and Stevens, Brain Res., 382 (1986) 134–138.

    Article  Google Scholar 

  20. D. Durand, The somatic shunt cable model for neurons, Biophys, J., 46 (1984) 645–653.

    Article  Google Scholar 

  21. J. Evans and N. Shenk, Solutions to axon equations, Biophysi, J.,6 (1970) 583–599.

    Google Scholar 

  22. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London), 117 (1952) 500–544.

    Google Scholar 

  23. C. Koch and P.R. Adams, Computer simulation of bullfrog sympathetic ganglion cell excitability, Soc. Neurosci.Abst., 11 (1984) 48.7.

    Google Scholar 

  24. C. Koch and T. Poggio, A simple algorithm for solving the cable equation in dendritic trees of arbitrary geometry, J. Neurosci. Meth., 12 (1985) 303–315.

    Article  Google Scholar 

  25. C. Koch and T. Poggio, Computations in the vertebrate retina: motion discrimination, gain enhancement and differentiation, Trends Neurosci., 9 (1986) 204–211.

    Article  Google Scholar 

  26. I. Parnas and I. Segev, A mathematical model for the conduction of action potentials along bifurcating axons, J. Physiol. (London), 295 (1979) 323–343.

    Google Scholar 

  27. R.R. Poznanski, Techniques for obtaining analytical solutions for the somatic shunt cable, Math. Biosci., 85 (1987) 13–35.

    Article  Google Scholar 

  28. J. Rinzel, Repetitive nerve impulse propagation: Numerical results andmethods, (in) Research Notes In Mathematics — Nonlinear Diffusion (eds.) W.E. Fitzgibbon and H.F. Walker, Pitman Publishing Ltd., London, 1977.

    Google Scholar 

  29. J. Rinzel, Excitation dynamics: In sights from simplified membrane models, Fed. Proc., 44 (1985) 2944–2946.

    Google Scholar 

  30. J. Rinzel and Y.S. Lee, Dissection of a model for neuronal parabolic bursting, J. Math. Biol., 25 (1987) 653–675.

    Article  Google Scholar 

  31. J.H. VAN Hateren, An efficient algorithm for cable theory, applied to blowfly photoreceptor cells and LMCs, Biol. Cyber., 54 (1986) 301–311.

    Article  Google Scholar 

  32. G. Adomian and R. Rach, Equality of partial solutions in the decomposition method for linear or nonlinear partial differential equations, Int. J. Comput. and Math, with Appl., 19 # 12 (1990) 9–12.

    Article  Google Scholar 

  33. G. Adomian, Decomposition solution of nonlinear hyperbolic equations, seventh Int. Conf. on Mathematical Modeling, Chicago, IL 2-5 August 1989 and Int. J. Comput. and Math, with Appl.

    Google Scholar 

  34. G. Adomian, A review of the decomposition method and some recent results for nonlinear equations, Int. J.Comput. and Math, with Appl.

    Google Scholar 

  35. G. Adomian, On the solution of complex dynamical systems I and II, Simulation, 54 # 5 (1990) 245–252.

    Article  Google Scholar 

  36. G. Adomian and R. Rach, Analytic solution of nonlinear boundary-value problems in several space dimensions,submitted for publication.

    Google Scholar 

  37. G. Adomian and R. Rach, An extension of the decomposition method for boundary-value problems, submitted for publication.

    Google Scholar 

  38. M. Witten, On stochasticity in the McKendrick/Von Foerster hyperbolic partial differential equation system, Int. J. Computers and Math, with Appl., 9 (1983) 447–458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Adomian, G., Witten, M., Adomian, G.E. (1991). A New Approach to the Solution of Neurological Models: Application to the Hodgkin-Huxley and the Fitzhugh-Nagumo Equations. In: Beckmann, M.J., Gopalan, M.N., Subramanian, R. (eds) Stochastic Processes and their Applications. Lecture Notes in Economics and Mathematical Systems, vol 370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58201-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58201-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54635-1

  • Online ISBN: 978-3-642-58201-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics