Skip to main content

Chemical Fragmentation Approach to the Quantum Chemical Description of Extended Systems

  • Chapter
Theoretical Treatment of Large Molecules and Their Interactions

Part of the book series: Perspectives in Antisense Science ((BSPS,volume 139))

Abstract

The proper description of the electronic structure of extended systems by state-of-the-art methods remains a challenging task [1] of quantum chemistry. In the past few years the notion of “large molecular systems” has undergone a considerable evolution, and species, which seemed almost impossible to treat by ab initio quantum chemistry are now in the domain of routine calculations. This development is mainly due to the revolution of computer technology (vector and/or parallel supercomputers) and new computational techniques, which are better adapted to the new generation of computers, like the direct SCF method [2]. The application of advanced computational techniques made it possible to undertake such spectacular calculations like the ab initio study of the C 60 Buckminsterfullerene [3] or the largest system ever studied by ab initio SCF calculations, the C150H30 molecule [4]. It seems that in the very near future several theoretical chemistry laboratories will be in the position to perform routinely calculations on molecules or molecular aggregates, containing 500/600 electrons [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Clementi E, Detrich J, Chin S, Corongiu G, Folsom D, Logan D, Caltabiano R, Carnevali A, Helin J, Russo M, Gnudi A, Palamidese P (1986) In: Clementi E, Chin S (eds) Structure and dynamics of nucleic acids, proteins, and membranes. Plenum, New York, p 403

    Google Scholar 

  2. Almlöf J, Faegri Jr. K, Korsell K (1983) J Comput Chem 3: 3003

    Google Scholar 

  3. Lüthi HP, Almlöf J (1987) Chem Phys Lett 135: 357

    Google Scholar 

  4. Almlöf J, Lüthi HP (1988) Chem Des Automat News 2:(8): 1

    Google Scholar 

  5. Häser M, Ahlrichs R (1989) J Comput Chem 10: 104

    Google Scholar 

  6. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel (1989) Chem Phys Lett 162: 165

    CAS  Google Scholar 

  7. Pauling L (1960) The nature of the chemical bond. Cornell, Ithaca NY

    Google Scholar 

  8. Náray-Szabó G, Surján PR, ángyán JG (1987) Applied quantum chemistry. Akadémiai Kiadó Reidel, Budapest Dordrecht

    Google Scholar 

  9. Surján PR (1984) Croat Chim Acta 57: 833

    Google Scholar 

  10. Minkin VI, Osipov OA, Zhdanov YA (1970) Dipole moments in organic chemistry. Plenum, New York

    Google Scholar 

  11. LeFèvre RJW (1965) Adv Phys Org Chem 3: 1

    Google Scholar 

  12. Claverie P (1978) In: Pullman (ed) Intermolecular interactions: From diatomics to biopolymers, Wiley. New York, p 69

    Google Scholar 

  13. Surján PR (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, Part 2, The concept of chemical bond, Springer, Berlin Heidelberg New York

    Google Scholar 

  14. Náray-Szabó G, Bleha T (1982) In: Csizmadia IG (ed) Molecular structure and conformation: Recent advances. Elsevier, Amsterdam, p 267 (Progress in theoretical organic chemistry, vol 3)

    Google Scholar 

  15. Jaffé HH, Orchin M (1962) Theory and application of ultraviolet spectroscopy. Wiley, New York

    Google Scholar 

  16. Davydov AS (1973) Theory of molecular excitons. McGraw Hill, New York

    Google Scholar 

  17. Snatzke G (1979) Angew Chem Int Ed Engl 18: 363

    Google Scholar 

  18. Patai S (ed) (1964) The chemistry of functional groups. Wiley, Chichester

    Google Scholar 

  19. Colthup NB, Daly LH, Wiberley SE (1975) Introduction to infared and Raman spectroscopy, 2nd edn Academic, New York

    Google Scholar 

  20. Tapia O (1982) In: Ratajczak H, Orville-Thomas WJ (eds) Intermolecular Interactions. vol 2, chap 2, Wiley, Chichester

    Google Scholar 

  21. Stoneham AM (1975) Theory of defects in solids. Oxford University Press, Oxford

    Google Scholar 

  22. Shustorovich E (1984) J Am Chem Soc 106: 6479

    CAS  Google Scholar 

  23. Siegbahn PEM, Blomberg MRA, Bauschlicher CW jr (1984) J Chem Phys 81: 4

    Google Scholar 

  24. Whangbo MH, Schlegel HB, Wolfe S (1977) J Am Chem Soc 99: 1296

    CAS  Google Scholar 

  25. Bernardi F, Bottom A (1982) In: Csizmadia IG (ed) Molecular structure and conformation: Recent advances. Elsevier, Amsterdam, p 65 (Progress in theoretical organic chemistry, vol 3)

    Google Scholar 

  26. Náray-Szabó G (1984) Croat Chem Acta 57: 901 and references therein

    Google Scholar 

  27. Bader RFW, Nguyen-Dang TT (1981) Adv Quantum Chem 14: 63

    CAS  Google Scholar 

  28. Bader RFW (1985) Acc Chem Res 18: 9

    CAS  Google Scholar 

  29. Bader RFW, Tal Y, Anderson SG, Nguyen-Dang TT (1980) Isr J Chem 19: 8

    CAS  Google Scholar 

  30. Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44: 893

    Google Scholar 

  31. Gatti C, Fantucci P, Pacchioni G (1987) Theoret Chim Acta 72: 433

    CAS  Google Scholar 

  32. Epiotis ND (1988) Pure Appl Chem 60: 157; Nouv J Chim, to be published

    CAS  Google Scholar 

  33. Bader RFW (1988) Pure Appl Chem 60: 145

    CAS  Google Scholar 

  34. Srebrenik S, Bader RFW (1975) J Chem Phys 63: 3945

    CAS  Google Scholar 

  35. Daudel R, Leroy G, Peeters D, Sana M (1983) Quantum chemistry, Wiley-Interscience, New York

    Google Scholar 

  36. Becker P (1977) Phys Scripta 15: 119

    CAS  Google Scholar 

  37. Wiberg K (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, vol 1 Springer, Berlin Heidelberg New York

    Google Scholar 

  38. Malrieu JP (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculation. Part A: techniques. Plenum, New York, p 69 (Modern theoretical chemistry, vol 7)

    Google Scholar 

  39. Boca R (1982) Theoret Chim Acta 61: 179

    CAS  Google Scholar 

  40. Wolfe S, Mitchell DJ, Whangbo MH (1978) J Am Chem Soc 100: 1936, 3698

    CAS  Google Scholar 

  41. Kost D, Schlegel HB, Mitchell DJ, Wolfe S (1979) Can J Chem 57: 729

    CAS  Google Scholar 

  42. Bernardi F, Bottoni A (1981) Theoret Chim Acta 58: 245

    CAS  Google Scholar 

  43. Moffitt W (1954) Rep Prog Phys 17: 173

    Google Scholar 

  44. Bálint-Kürti GG, Karplus M (1974) In: March NH (ed) Orbital theories of molecules and solids, Clarendon, Oxford, p 250

    Google Scholar 

  45. Schipper PE (1987) Austrian J Chem 40: 635

    CAS  Google Scholar 

  46. Mayer I (1983) Int J Quantum Chem 23: 323

    Google Scholar 

  47. Maksic ZB, Eckert-Maksic M, Rupnik K (1984) Croat Chem Acta 57: 1295

    Google Scholar 

  48. Maksic ZB (1986) Comp Maths with Appls 12B: 697

    Google Scholar 

  49. Maksic ZB (1988) J Mol Struct (Theochem) 170: 39

    Google Scholar 

  50. Maksic ZB (1989) In: Maruani J (ed) Molecules in physics, chemistry and biology, vol 3 Kluwer Academic, Dordrecht, p 49

    Google Scholar 

  51. Hall GG (1951) Proc Roy Soc (London) Ser A 205: 541

    CAS  Google Scholar 

  52. Sándorfy C (1955) Can J Chem 33: 1337

    Google Scholar 

  53. Del Re G (1958) J Chem Soc 4031

    Google Scholar 

  54. Hoyland JR (1968) J Am Chem Soc 90: 2227

    CAS  Google Scholar 

  55. Diner S, Malrieu JP, Claverie P (1969) Theoret Chim Acta 13: 1

    CAS  Google Scholar 

  56. Náray-Szabó G (1976) Acta Phys Acad Sci Hung 40: 261

    Google Scholar 

  57. Surján PR, Révész M, Mayer I (1981) J Chem Soc Faraday Trans 2 77: 1129

    Google Scholar 

  58. Gibbs GV, Meagher EP, Newton MD, Swanson DK (1981) In: O’Keefe M, Navrotsky A (eds) Structure and bonding in crystals, Academic, New York, vol 1, p 195

    Google Scholar 

  59. Sauer J, Zahradnik R (1984) Int J Quantum Chem 26: 793

    CAS  Google Scholar 

  60. Messmer RP (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculation. Part B: Applications. Plenum, New York, p 215 (Modern theoretical chemistry, vol 8)

    Google Scholar 

  61. László I (1982) Int J Quantum Chem 21: 813

    Google Scholar 

  62. Náray-Szabó G, Kramer G, Nagy P, Kugler S (1987) J Comput Chem 8: 555

    Google Scholar 

  63. Révész M, Bertóti I, Mink G, Mayer I (1988) J Mol Struct (Theochem) 181: 335

    Google Scholar 

  64. Dovesi R, Pisani C, Roetti C, Silvi B (1987) J Chem Phys 86: 6967

    CAS  Google Scholar 

  65. McWeeny R (1959) Proc Roy Soc (London) Ser A 253: 242

    CAS  Google Scholar 

  66. McWeeny R (1960) Rev Mod Phys 32: 335

    Google Scholar 

  67. McWeeny R, Sutcliffe BT (1969) Methods of mecular quantum mechanics, Academic, London

    Google Scholar 

  68. Hoffman DK, Ruedenberg K, Verkade JG (1977) Structure and Bonding 33: 57

    CAS  Google Scholar 

  69. Bishop DM (1967) Adv Quantum Chem 3: 25

    CAS  Google Scholar 

  70. Lykos PG, Parr RG (1956) J Chem Phys 24: 1166

    CAS  Google Scholar 

  71. Parr RG, Ellison FO, Lykos PG (1956) J Chem Phys 24: 1106

    CAS  Google Scholar 

  72. Szász L (1985) Pseudopotential theory of atoms and molecules, J. Wiley, New York

    Google Scholar 

  73. McWeeny R, Ohno K (1960) Proc Roy Soc (London) Ser A 255: 367

    CAS  Google Scholar 

  74. Huzinaga S, Cantu AA (1971) J Chem Phys 55: 5543

    CAS  Google Scholar 

  75. Adams WH (1961) J Chem Phys 34: 89

    CAS  Google Scholar 

  76. Gilbert TL (1964) In: Löwdin PO, Pullman B (eds) Molecular orbitals in chemistry, physics and biology. Academic, New York, p 409

    Google Scholar 

  77. Kunz AB (1973) J Phys B 6: L47

    CAS  Google Scholar 

  78. Matsuoka O (1977) J Chem Phys 66: 1245

    CAS  Google Scholar 

  79. McWeeny R, Steiner E (1965) Adv Quantum Chem 2: 93

    CAS  Google Scholar 

  80. Kutzelnigg W (1966) J Chem Phys 40: 3640

    Google Scholar 

  81. Surján PR (1984) Phys Rev A 30: 43

    Google Scholar 

  82. Klessinger M, McWeeny R (1965) J Chem Phys 67: 2728

    Google Scholar 

  83. Mehler EL (1977) J Chem Phys 67: 2728

    CAS  Google Scholar 

  84. Mehler EL (1981) J Chem Phys 74: 6298

    CAS  Google Scholar 

  85. Mehler EL (1978) Int J Quantum Chem Quantum Chem Symp 12: 407

    CAS  Google Scholar 

  86. Fülscher MP, Mehler EL (1986) Int J Quantum Chem 29: 627

    Google Scholar 

  87. Fülscher MP, Mehler EL (1988) J Mol Struct (Theochem) 165: 319

    Google Scholar 

  88. Kirtman B, de Melo CP (1981) J Chem Phys 75: 4592

    CAS  Google Scholar 

  89. Kirtman B (1982) J Phys Chem 86: 1059

    CAS  Google Scholar 

  90. Kirtman B (1983) J Chem Phys 79: 835

    CAS  Google Scholar 

  91. Kirtman B, de Melo CP (1986) Int J Quantum Chem 89: 1209

    Google Scholar 

  92. Kirtman B, Dykstra CE (1986) J Chem Phys 85: 2791

    CAS  Google Scholar 

  93. Dykstra CE (1988) Ab initio calculation of structures and properties of molecules. Elsevier, Amsterdam, chap 5

    Google Scholar 

  94. McWeeny R (1962) Rev Mod Phys 32: 335

    Google Scholar 

  95. Gordon MS, England W (1972) J Am Chem Soc 94: 5168

    CAS  Google Scholar 

  96. Claverie P (1978) in Ref [12], pp 180–182

    Google Scholar 

  97. Mulliken RS (1955) J Chem Phys 23: 1833

    CAS  Google Scholar 

  98. Mayer I (1983) Chem Phys Lett 97: 270; (1983) Int J Quantum Chem 23: 341

    CAS  Google Scholar 

  99. Jug K (1973) Theoret Chim Acta 31: 63

    CAS  Google Scholar 

  100. Thole BT, van Duijnen PT (1983) Theoret Chim Acta 63: 209

    CAS  Google Scholar 

  101. Brobjer JT, Murrell JN (1981) Chem Phys Lett 77: 601; JCS Faraday Trans 2 78: 1853

    CAS  Google Scholar 

  102. Cox SR, Williams DE (1981) J Comput Chem 2: 304

    CAS  Google Scholar 

  103. Ray NK, Shibata M, Bolis R, Rein R (1985) Int J Quantum Chem 27: 427

    CAS  Google Scholar 

  104. Rullman JAC (1988) Ph D Thesis, University of Groningen, Netherlands

    Google Scholar 

  105. Némethy G, Pottle MS, Scheraga H (1983) J Phys Chem 87: 1883

    Google Scholar 

  106. Pettitt BM, Karplus M (1985) J Am Chem Soc 107: 1166

    CAS  Google Scholar 

  107. Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) J Comput Chem 7: 230

    CAS  Google Scholar 

  108. Jorgensen WL, Swenson CJ (1985) J Am Chem Soc 107: 569

    CAS  Google Scholar 

  109. Rullman JAC, van Duijnen PT (1988) Mol Phys 63: 451

    Google Scholar 

  110. Mehler EL, Paul CH (1979) Chem Phys Lett 63: 145

    CAS  Google Scholar 

  111. Pullman A, Pullman B (1981) Quart Rev Biophys 14: 283

    Google Scholar 

  112. Pullman A, Perahia D (1978) Theoret Chim Acta 48: 29

    CAS  Google Scholar 

  113. Bonaccorsi R, Scrocco E, Tomasi J (1976) J Am Chem Soc 98: 4049; ibid 99: 4545

    CAS  Google Scholar 

  114. Agresti A, Bonaccorsi R, Tomasi J (1979) Theoret Chim Acta 53: 215

    CAS  Google Scholar 

  115. Lavery R, Etchebest C, Pullman A (1982) Chem Phys Lett 85: 266

    CAS  Google Scholar 

  116. Etchebest C, Lavery R, Pullman A (1982) Theoret Chim Acta 62: 17

    CAS  Google Scholar 

  117. Hall GG (1973) Chem Phys Lett 20: 501

    CAS  Google Scholar 

  118. Stone AJ (1981) Chem Phys Lett 83: 233

    CAS  Google Scholar 

  119. Stone AJ, Alderton M (1985) Mol Phys 56: 1047

    CAS  Google Scholar 

  120. Vigné-Maeder F, Claverie P (1988) J Chem Phys 88: 4934

    Google Scholar 

  121. Stone AJ, Price SL (1988) J Phys Chem 92: 3325

    CAS  Google Scholar 

  122. Stone AJ (1989) In: Maksic ZB (ed) Theoretical models of chemical bonding, chap 6. Classical electrostatics in intermolecular interactions vol 4, Springer, Berlin Heidelberg New York

    Google Scholar 

  123. Faerman CH, Price SL (1990) Am Chem Soc 112: 4915

    CAS  Google Scholar 

  124. Náray-Szabó G (1979) Int J Quantum Chem 16: 265

    Google Scholar 

  125. Náray-Szabó G, Grofcsik A, Kósa K, Kubinyi M, Martin A (1981) 2: 58

    Google Scholar 

  126. Nagy P, ángyán J, Náray-Szabó G, Peinel G (1987) Int J Quantum Chem 31: 927

    CAS  Google Scholar 

  127. Seres J, Náray-Szabó G, Simon K, Daróczi-Csuka K, Szilágyi I, Párkányi L (1981) Tetrahedron 37: 1565

    CAS  Google Scholar 

  128. ösapay K, Náray-Szabó G (1983) J Mol Struct (Theochem) 92: 57

    Google Scholar 

  129. Náray-Szabó G (1987) In: Maksić ZB (ed) Modelling of structures and properties of molecules. Ellis Horwood, Chichester, England, p 299

    Google Scholar 

  130. Ewald P (1921) Ann Phys 64: 253

    Google Scholar 

  131. Catti M (1978) Acta Cryst 34A: 974

    Google Scholar 

  132. Cummings PG, Dunmur A, Munn RW, Newham RJ (1976) Acta Cryst 32A: 847

    Google Scholar 

  133. ángyán JG, Ferenczy G, Nagy P, Náray-Szabó G (1988) Coll Czech Chem Commun 53: 2308

    Google Scholar 

  134. Ferenczy G, ángyán JG, (1990) J Chem Soc Faraday Trans 86: 3461

    CAS  Google Scholar 

  135. Otto P, Ladik J (1975) Chem Phys 8: 192; (1977) ibid 19: 209

    CAS  Google Scholar 

  136. Otto P (1978) Chem Phys 33: 407

    CAS  Google Scholar 

  137. Otto P (1979) Chem Phys Lett 62: 538

    CAS  Google Scholar 

  138. Förner W, Otto P, Bernhardt J, Ladik J (1981) Theoret Chim Acta 60: 269

    Google Scholar 

  139. Otto P (1985) Int J Quantum Chem 28: 895; (1986) ibid 30: 275

    CAS  Google Scholar 

  140. ángyán JG, Silvi B (1987) J Chem Phys 86: 6957

    Google Scholar 

  141. Weinstein H, Eilers JE, Chang SY (1977) Chem Phys Lett 51: 534

    CAS  Google Scholar 

  142. Klessinger M (1978) Theoret Chim Acta 49: 77

    CAS  Google Scholar 

  143. Kiessinger M (1988) Int J Quantum Chem 23: 535

    Google Scholar 

  144. Longuet-Higgins HC, Murrell JN (1955) Proc Phys Soc (London) Sect A 68: 601

    Google Scholar 

  145. Heilbronner E, Weber JP, Michl J, Zahradnik R (1965) Theoret Chim Acta 6: 141

    Google Scholar 

  146. Favini G, Gamba A, Simonetta M (1969) Theoret Chim Acta 13: 175

    CAS  Google Scholar 

  147. Germer HA jr, Becker RS (1972) Theoret Chim Acta 28: 1

    CAS  Google Scholar 

  148. Fabian J, Scholtz M (1981) Theoret Chim Acta 59: 117

    CAS  Google Scholar 

  149. von Niessen W (1971) J Chem Phys 55: 1948; (1973) Theoret Chim Acta 31: 111; (1973) ibid 32: 13; (1974) ibid 33: 7

    Google Scholar 

  150. Christoffersen RE (1972) Adv Quantum Chem 6: 333

    CAS  Google Scholar 

  151. Frost AA (1967) J Chem Phys 47: 3707, 3714

    CAS  Google Scholar 

  152. Gáspár R jr, Gáspár R (1979) Int J Quantum Chem 15: 567; (1979) ibid 16: 57, (1980) ibid 19: 501

    Google Scholar 

  153. Gáspár R, Gáspár R jr (1979) Int J Quantum Chem 15: 559

    Google Scholar 

  154. O’Shea SF, Santry DF (1975) Theoret Chim Acta 37: 1

    Google Scholar 

  155. Santry DP (1975) Theoret Chim Acta 42: 67

    Google Scholar 

  156. Pastori Parravicini GP, Resca L (1973) Phys Rev B 8: 3009

    Google Scholar 

  157. Ghio C, Scrocco E, Tomasi J (1976) In: Pullman B (ed) Environmental effects of molecular structure and properties, Reidel, Dordrecht, p 329

    Google Scholar 

  158. Tsukada M (1980) J Phys Soc Jpn 49: 1183

    CAS  Google Scholar 

  159. Barandiarán Z, Pueyo L, Gomez-Beltrán F (1983) J Chem Phys 78: 4612 and (1983) ibid 79: 1926

    Google Scholar 

  160. Zyss J, Berthier G (1982) J Chem Phys 77: 3635

    CAS  Google Scholar 

  161. Böhm MC (1982) Chem Phys Lett 89: 126

    Google Scholar 

  162. Winter NW, Pitzer RM, Temple DK (1987) J Chem Phys 86: 3549; ibid 87: 2947

    CAS  Google Scholar 

  163. Vail JM, Pandey R (1986) Mater Res Soc Symp Proc 63: 247

    CAS  Google Scholar 

  164. Barandiarán Z, Seijo L (1988) J Chem Phys 89: 5739

    Google Scholar 

  165. Sanhueza JE, Tapia O, Laidlaw WG, Trsic M (1979) J Chem Phys 70: 3096

    CAS  Google Scholar 

  166. Surján PR, Ángyán J (1983) Phys Rev A 28: 45

    Google Scholar 

  167. Mayer I (1971) Acta Phys Acad Sci Hung 30: 373

    CAS  Google Scholar 

  168. Harris FE (1968) J Chem Phys 48: 4027

    Google Scholar 

  169. Ruedenberg K (1957) J Chem Phys 19: 1433

    Google Scholar 

  170. Carbó R, Arnau C (1978) Gazz Chim Ital 108: 71

    Google Scholar 

  171. Steinhauser O, Schuster P (1977) Theoret Chim Acta 45: 147; ibid 46: 157

    CAS  Google Scholar 

  172. Hashimoto M, Santry DP (1978) Theoret Chim Acta 50: 39

    CAS  Google Scholar 

  173. Fink WH, Banerjee A, Simons J (1983) J Chem Phys 79: 6104

    CAS  Google Scholar 

  174. Sesé LM, Banon A, Fernandez M (1983) J Mol Struct (Theochem) 92: 231

    Google Scholar 

  175. Sesé LM, Fernández M (1983) J Mol Struct (Theochem) 93: 261

    Google Scholar 

  176. Sesé LM (1985) J Mol Liquids 30: 185

    Google Scholar 

  177. Whitten JL, Pakkanen TA (1980) Phys Rev B 21: 4357

    CAS  Google Scholar 

  178. Harding JH, Harker AH, Keegstra PB, Pandey R, Vail JM, Woodward C (1985) Physica 131B: 151

    Google Scholar 

  179. Schluger AL, Kotomin EA, Kantorovich LN (1986) J Phys C: Solid State Phys 19: 4183

    Google Scholar 

  180. Kugler S, Surján PR, Náray-Szabó G (1988) Phys Rev B 37: 9069

    CAS  Google Scholar 

  181. Pisani C, Dovesi R (1987) Theoret Chim Acta 72: 277

    CAS  Google Scholar 

  182. Fisher AJ (1987) Theoret Chim Acta 72: 319

    CAS  Google Scholar 

  183. Baraff GA, Schlüchter M (1986) J Phys C: Solid State Phys 19: 4383

    Google Scholar 

  184. Bridet J, Fliszár S, Odiot PS, Pick R (1983) Int J Quantum Chem 24: 687

    CAS  Google Scholar 

  185. Mix H, Sauer J, Schröder V, Merkel A (1988) Coll Czech Chem Commun 53: 2191

    CAS  Google Scholar 

  186. Zahradnik R, Hobza P, Sauer J (1982) In: Náray-Szabó G (ed) Steric effects in biomolecules. Akadémiai Kiadó, Elsevier, Budapest, p 327

    Google Scholar 

  187. Náray-Szabó G, Kramer G, Nagy P, Kugler S (1987) J Comp Chem 8: 555

    Google Scholar 

  188. Noell JO, Morokuma K (1975) Chem Phys Lett 36: 465

    CAS  Google Scholar 

  189. Noell JO, Morokuma K (1976) J Phys Chem 80: 2675

    CAS  Google Scholar 

  190. Tapia O, Johannin G (1981) J Chem Phys 75: 3624

    CAS  Google Scholar 

  191. Kollman PA, Hayes DM (1981) J Am Chem Soc 103: 2955

    CAS  Google Scholar 

  192. van Duijnen PT, Thole BT, Hol WGJ (1979) Biophys Chem 9: 273

    Google Scholar 

  193. Allen LC (1981) Ann NY Acad Sci 367: 383

    CAS  Google Scholar 

  194. Onsager L (1936) J Am Chem Soc 58: 1486

    CAS  Google Scholar 

  195. Tapia O, Goscinski O (1975) Mol Phys 29: 1653

    CAS  Google Scholar 

  196. Klopman G (1968) Chem Phys Lett 1: 200

    Google Scholar 

  197. Miertus S, Kysel O (1977) Chem Phys 21: 27

    CAS  Google Scholar 

  198. Rivail JL, Rinaldi D (1976) Chem Phys 18: 233

    CAS  Google Scholar 

  199. Constanciel R, Tapia O (1978) Theoret Chim Acta 48: 75

    CAS  Google Scholar 

  200. Tapia O, Lamborelle C (1979) Chem Phys

    Google Scholar 

  201. Newton MD (1975) J Phys Chem 79: 2795

    CAS  Google Scholar 

  202. Hylton J, Christoffersen RE, Hall GG (1974) Chem Phys Lett 24: 501

    CAS  Google Scholar 

  203. Rinaldi D, Ruiz-Lopez MF, Rivail JL (1983) J Chem Phys 78: 834

    CAS  Google Scholar 

  204. Miertus, Scrocco E, Tomasi J (1981) Chem Phys 55: 117

    CAS  Google Scholar 

  205. Mikkelsen KV, Àgren H, Jensenand HJA, Helgaker T (1988) J Chem Phys 89: 3086

    CAS  Google Scholar 

  206. Tapia O, Sussman F, Poulain E (1978) J Theor Biol 71: 49

    CAS  Google Scholar 

  207. Longo E, Stamato F, Ferreira R, Tapia O (1985) J Theor Biol 112: 783

    CAS  Google Scholar 

  208. ángyán J, Allavena M, Picard M, Potier A, Tapia O (1982) J Chem Phys 77: 4723

    Google Scholar 

  209. Thole BT (1981) Chem Phys 59: 341

    CAS  Google Scholar 

  210. Ángyán J, Náray-Szabó G (1983) Theoret Chim Acta 64: 27; (1984) Acta Chim Hung 116: 141

    Google Scholar 

  211. Tapia O (1990) In: H Weinstein, G Náray-Szabó (eds) Reports in Molecular Theory, CRC Press, Boca Raton (in press)

    Google Scholar 

  212. ángyán JG, in preparation

    Google Scholar 

  213. Thole BT, van Duijnen PT (1982) Chem Phys 71: 211

    CAS  Google Scholar 

  214. Rinaldi D, Costa Cabrai BJ, Rivail JL (1986) Chem Phys Lett 125: 495

    CAS  Google Scholar 

  215. Warshel A, Levitt M (1976) J Mol Biol 103: 227

    CAS  Google Scholar 

  216. Russell ST, Warshel A (1985) J Mol Biol 185: 389

    CAS  Google Scholar 

  217. Warshel A, Weiss RM (1980) J Am Chem Soc 102: 6218

    CAS  Google Scholar 

  218. Warshel A, Russell S (1986) J Am Chem Soc 108: 6569

    CAS  Google Scholar 

  219. Warshel A, Sussman F (1986) Proc Natl Acad Sci USA 83: 3806

    CAS  Google Scholar 

  220. Náray-Szabó G, Surján PR (1983) Chem Phys Lett 96: 449

    Google Scholar 

  221. Del Re G (1963) Theoret Chim Acta 1: 188

    Google Scholar 

  222. Bálint I, Ban MI (1983) Computers and Chem 7: 199

    Google Scholar 

  223. Náray-Szabó G, Surján PR, Kiss AI (1985) J Mol Struct (Theochem) 123: 85

    Google Scholar 

  224. Allavena M, Seiti K, Kassab E, Ferenczy G, Ángyán JG (1990) Chem Phys Lett 172: 55

    Google Scholar 

  225. Dempsey E (1969) J Phys Chem 73: 3660

    CAS  Google Scholar 

  226. Preuss E, Linden G, Peuckert M (1985) J Phys Chem 89: 2955

    CAS  Google Scholar 

  227. Lievens J (1987) personal comm

    Google Scholar 

  228. Mortier WJ (1987) Structure and Bonding 66: 125

    CAS  Google Scholar 

  229. van Genechten KA, Mortier WJ, Geerlings J (1987) J Chem Phys 86: 5063

    Google Scholar 

  230. Uytterhoven L, Lievens J, van Genecheten K, Mortier WJ (1987) Preprints of Conference Proceedings in Eberswalde (GDR)

    Google Scholar 

  231. Löwenstein W (1954) Am Mineral 39: 92

    Google Scholar 

  232. Johannin G, Kellersohn N (1972) Biochem Biophys Res Commun 49: 321

    CAS  Google Scholar 

  233. Warshel A (1981) Acc Chem Res 14: 281

    Google Scholar 

  234. Náray-Szabó G (1988) J Mol Catal 47: 281

    Google Scholar 

  235. Kraut J (1977) Annu Rev Biochem 46: 331

    CAS  Google Scholar 

  236. Polgár L, Halász P (1982) Biochem J 207: 1

    Google Scholar 

  237. Schowen RL (1987) In: Liebman JF, Greenberg A (eds) Principles of enzyme activity. VCH Publishers, Dcerfield Beach FL USA, p 1

    Google Scholar 

  238. Bernstein FC, Koetzle TF, Williams GJB, Meyer jr EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) J Mol Biol 112: 535

    CAS  Google Scholar 

  239. Náray-Szabó G, Polgár L (1981) Tnt J Quantum Chem Quantum Biol Symp 7: 397

    Google Scholar 

  240. Náray-Szabó G (1982) Int J Quantum Chem 22: 575

    Google Scholar 

  241. Náray-Szabó G, Kapur A, Mezey PG, Polgár L (1982) J Mol Struct (Theochem) 90: 137

    Google Scholar 

  242. Ángyán J, Náray-Szabó G (1983) J Theor Biol 103: 349

    Google Scholar 

  243. Náray-Szabó G (1984) J Am Chem Soc 106: 4584

    Google Scholar 

  244. Nagy P, Náray-Szabó G (1985) J Mol Struct (Theochem) 123: 413

    Google Scholar 

  245. Náray-Szabó G (1986) J Mol Struct (Theochem) 134: 401

    Google Scholar 

  246. Umeyama H, Imamura A, Nagata I, Hanano M (1973) J Theor Biol 41: 485

    CAS  Google Scholar 

  247. Scheiner S, Kleier DA, Lipscomb WN (1975) Proc Natl Acad Sci USA 72: 2606

    CAS  Google Scholar 

  248. Náray-Szabó G, Warshel A (1989) In: Kotyk A (ed) Proceedings of the 14th International Congress of Biochemistry. VSP Intl Sci Publ, Zeist

    Google Scholar 

  249. Umeyama H, Nakagawa S, Kudo T (1981) J Mol Biol 150: 409

    CAS  Google Scholar 

  250. Wooten F, Winter K, Weaire D (1985) Phys Rev Lett 54: 1392

    CAS  Google Scholar 

  251. Kramer B, King H, Mackinnon A (1983) J Non-Cryst Solids 59–60: 73

    Google Scholar 

  252. Brey L, Tejedor C, Verges A (1984) Phys Rev Lett 52: 1840

    CAS  Google Scholar 

  253. Ley L, Reichardt J, Johnson RL (1982) Phys Rev Lett 49: 1664

    CAS  Google Scholar 

  254. Klug DD, Whalley E (1982) Phys Rev B 25: 5543

    CAS  Google Scholar 

  255. Kugler S, Náray-Szabó G (1987) J Non-Cryst Solids 97–98: 503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ángyán, J.G., Náray-Szabó, G. (1991). Chemical Fragmentation Approach to the Quantum Chemical Description of Extended Systems. In: Maksić, Z.B. (eds) Theoretical Treatment of Large Molecules and Their Interactions. Perspectives in Antisense Science, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58183-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58183-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63495-6

  • Online ISBN: 978-3-642-58183-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics