Skip to main content

A General Model of Algebraic Problem Solving for the Design of Interactive Learning Environments

  • Conference paper
Mathematical Problem Solving and New Information Technologies

Part of the book series: NATO ASI Series ((NATO ASI F,volume 89))

Abstract

A general model for a class of algebraic problems is presented as a framework for the design of Interactive Learning Environments. This model enables us to consider several levels for the reference knowledge of a learning environment. It allows us to represent knowledge for the control of the student's problem solving activity without the model tracing constraint which requires the student to follow the behavior of the reference knowledge. The APLUSIX system is an Interactive Learning Environment in the domain of factorization of polynomials which has been developed in that framework. Experiments have been conducted in France and protocols have been collected in order to study human learning process in that domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R.: The architecture of cognition. Cambridge: Harvard University Press 1983

    Google Scholar 

  2. Anderson, J. R., Boyle C. F., Corbett A. T., & Lewis M.W.: Cognitive modeling and intelligent tutoring. Artificial Intelligence, 42(1) (1990)

    Google Scholar 

  3. Balacheff, N.: Nature et objet du raisonnement explicatif. In: Actes du colloque “L'explication dans l'enseignement et l'EIAO” (M.G. Séré et A. Weil-Barais, eds.), Ecole Normale Supérieure de Cachan, Avril 1990

    Google Scholar 

  4. Brousseau, G.: Fondements et méthodes de la didactique des mathématiques. Recherche en Didactique des Mathématiques, 7(2), 33–115 (1986)

    Google Scholar 

  5. Brown, J. S.: Process versus product: a perspective on tools for communal and informal electronic learning. Journal of Educational Computing Research, 1 (1985)

    Google Scholar 

  6. Brown, J. S. & Burton, R. R.: Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155–191 (1978)

    Article  Google Scholar 

  7. Bundy, A.: The computer modeling of mathematical reasoning. New York: Academic Press 1983

    Google Scholar 

  8. Chandrasekaran B., Tanner, M. C, & Josephson, J. R.: Explaining control strategies in problem solving. IEEE Expert, 9–20 (1989)

    Google Scholar 

  9. Dillenbourg, P., & Self, J.: A framework for student modelling. Technical Report TR-AI-49, Computing Department, University of Lancaster 1990

    Google Scholar 

  10. Gilbert, G: Forms of explanation. In: Proceedings of AAAI'88 Workshop on Explanation, Saint Paul, 72–75 (1988)

    Google Scholar 

  11. Goldstein, I. P.: The genetic graph: A representation for the evolution of procedural knowledge. In: Intelligent tutoring systems (Sleeman & Brown, eds.). London: Academic Press 1982

    Google Scholar 

  12. Lewis, M. W., Milson, R., & Anderson, J. R.: The teacher's apprentice: designing an intelligent authoring system for high school mathematics. In: Artificial intelligence and instruction, application and methods (G. Kearsley, ed.). New York: Addison Wesley 1987

    Google Scholar 

  13. Nicaud, J.F.: APLUSIX: un système expert en résolution pédagogique d'exercices d'algèbre. Thèse de l'Université de Paris XI 1987

    Google Scholar 

  14. Nicaud, J.F. & Saïdi, M.: Explanation of algebraic reasoning: the APLUSIX System. Lecture Notes in Artificial Intelligence, 444. Berlin: Springer-Verlag 1989

    Google Scholar 

  15. Saïdi, M.: Evaluation optimisée et planification en résolution d'exercices d'algèbre. 2ème Journées EIAO de Cachan. Ecole Normale Supérieure de Cachan, Janvier 1991

    Google Scholar 

  16. Sleeman, D. H. & Smith, M. J.: Modelling student's problem solving. Artificial Intelligence, 171–187 (1981)

    Google Scholar 

  17. Sleeman, D. H.: An attempt to understand student's understanding of basic algebra. Cognitive Science, 8, 387–412 (1984)

    Article  Google Scholar 

  18. Stevens, A., Collins, A. M & Golding, S. E.: Misconceptions in students' understanding. In: Intelligent tutoring systems (Sleeman & Brown, eds.). New York: Academic Press 1982

    Google Scholar 

  19. Vivet, M.: Expertise mathématique et informatique: CAMELIA, un logiciel pour raisonner et calculer. Thèse d'état, Paris VI 1984

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicaud, JF. (1992). A General Model of Algebraic Problem Solving for the Design of Interactive Learning Environments. In: Ponte, J.P., Matos, J.F., Matos, J.M., Fernandes, D. (eds) Mathematical Problem Solving and New Information Technologies. NATO ASI Series, vol 89. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58142-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58142-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63483-3

  • Online ISBN: 978-3-642-58142-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics