Skip to main content

Callitris spp. (Cypress Pine): In Vivo and In Vitro Accumulation of Podophyllotoxin and Other Secondary Metabolites

  • Chapter
Medicinal and Aromatic Plants V

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 24))

  • 435 Accesses

Abstract

The name Callitris is derived from the Greek word kallistos, and means most beautiful (Dallimore and Jackson 1966). It was first named by Ventenat in 1808 (Adams and Simmons 1987), and is a relatively small genus that belongs to the division of Gymnospermae, order Coniferales, family Cupressaceae (Sporne 1969). Appreciable nomenclature complexities occur and therefore the reports on the number of Callitris species varies. Figures of 13, 14, 15, 16, and 20 species have been mentioned by several authors (Li 1953; Dallimore and Jackson 1966; Gadek and Quinn 1983; Krüssmann 1985; Adams and Simmons 1987; Evans 1989). In the Index Kewensis the names of 39 species are listed (Hooker and Jackson 1895).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R, Simmons D (1987) A chemosystematic study of Callitris (Cupressaceae) in South-eastern Australia using volatile oils. Aust For Res 17:113–125

    Google Scholar 

  • Alcaraz C (1976) Recherches géobotaniques sur la végétation de l’ouest Algérien. Bull Soc Hist Nat Afr Nord 67:19–36

    Google Scholar 

  • Alcaraz C (1979) Thuya formations on calcareous soil in the hot upper semi-arid sub-stage in Oranie (West Algeria). Candollea 34:247–271

    Google Scholar 

  • Ansari FR, Ansari WH, Rahman W, Okigawa M, Kawano N (1981) Flavonoids from leaves of Callitris glauca R. Br. (Cupressaceae) Indian J Chem 20:724–725

    Google Scholar 

  • Ash J (1983) Tree rings in tropical Callitiris macleayana F. Muell. Aust J Bot 31:277–281

    Article  Google Scholar 

  • Atkinson PW, Crow WD (1970) Natural and thermal isomers of methyl trans communate. Tetrahedron 26:1935–1941

    Article  CAS  Google Scholar 

  • Aynehchi Y (1971) Desoxypodophyllotoxin, the cytotoxic principle of Callitris columellaris F. Muell. J Pharm Sci 60:121–122

    Article  CAS  Google Scholar 

  • Barr A, Chapman J, Smith N, Beveridge M (1988) Traditional bush medicine — an aboriginal Pharmacopoeia. Greenhouse, Richmond, Australia, pp 64–65

    Google Scholar 

  • Berlin J, Witte L, Schubert W, Wray V (1984) Determination and quantification of monoterpenoids secreted into the medium of cell cultures of Thuja occidentalis. Phytochemistry 23:1277–1279

    Article  CAS  Google Scholar 

  • Brecknell DJ, Carman RM (1978) Callitrin, callitrisin, dihydrocallitrisin, columellarin and dihydrocolumellarin, new sesquiterpene lactones from the heartwood of Callitris columellaris. Tetrahedron Lett 1:73–76

    Article  Google Scholar 

  • Brecknell DJ, Carman RM (1979a) The interconversion of two elemadienolides through two consecutive Cope rearrangements. Aust J Chem 32:2097–2102

    Article  CAS  Google Scholar 

  • Brecknell DJ, Carman RM (1979b) Novel sesquiterpene lactones from Callitris columellaris heartwood. Aust J Chem 32:2455–2471

    Article  CAS  Google Scholar 

  • Carman RM, Deeth HC (1967) Diterpenoids. XIV. 4-Epidehydroabietic acid from the oleoresin of Callitris columellaris F. Muell. Aust J Chem 20:2789–2793

    Article  CAS  Google Scholar 

  • Carman RM, Deeth HC (1971) Diterpenoids. XXVI. A new diterpenoid acid from the oleoresin of Callitris columellaris. Aust J Chem 24:353–359

    Article  CAS  Google Scholar 

  • Carman RM, Van Dongen JMAM (1984) 5-isopropyl-3-methylbenzene-1,2-diol. Aust J Chem 37:2607–2610

    Article  CAS  Google Scholar 

  • Carman RM, Lambert LK, Robinson WT, Van Dongen JMAM (1986) 3,10-Dihydroxydielmentha-5, l l-diene-4,9-dione. A diterpenoid (bismonoterpenoid ?) with a novel carbon skeleton. Aust J Chem 39:1843–1850

    Article  CAS  Google Scholar 

  • Chuah YS, Ward AD (1969) A correlation of callitrisic acid with podopcarpic acid. Aust J Chem 22:1333–1336

    Article  CAS  Google Scholar 

  • Chuang MJ, Chang WC (1987) Embryoid formation and plant regeneration in callus cultures derived from vegetative tissues of Dysosma pleiantha (Hance) Woodson. J Plant Physiol 128:279–283

    Article  Google Scholar 

  • Clark PJ, Slevin ML (1987) The clinical pharmacology of etoposide and teniposide. Clin Pharmokinet 12:223–252

    Article  CAS  Google Scholar 

  • Clayton-Greene KA (1983) The tissue water relationships of Callitris columellaris, Eucalyptus melliodora and Eucalyptus microcarpa investigated using the pressure-volume technique. Oecologia (Berl) 57:368–373

    Article  Google Scholar 

  • Dallimore W, Jackson AB (1966) A handbook of Coniferae and Ginkgoaceae. 4th edn, revised by Harrison SG. Edward Arnold, London, pp 125–132

    Google Scholar 

  • Dewick PM, Jackson DE (1981) Cytotoxic lignans from Podophyllum, and the nomenclature of arvltetralin linnans. Phytochemistry 20:2277–2280

    Article  CAS  Google Scholar 

  • Dittrich P, Gietl M, Kandler O (1971) D-1-O-methyl-muco inositol in higher plants. Phytochemistry 11:245–250

    Article  Google Scholar 

  • Duffield AM (1967) Mass spectrometric fragmentation of some lignans. J Heterocycl Chem 4:16–22

    Article  CAS  Google Scholar 

  • Elissalde MH, Ivie GW, Rowe LD, Elissalde GS (1983) Considerations of the structure of sesquiterpene lactones on biological activity: influence of the a-methylene-y-lactone moiety on the mast cell degradation. Am J Vet Res 44:1894–1897

    PubMed  CAS  Google Scholar 

  • Evans WC (1989) Trease and Evans’ pharmacognosy. 13th edn, Bailliere Tindall, London, pp 163–164

    Google Scholar 

  • Fitzgerald DB, Belkin M, Felix MD, Carroll (1953) Tumor-damaging capacity of plant materials. IV. Conifers. J Natl Cancer Inst 13:895–903

    PubMed  CAS  Google Scholar 

  • Fitzgerald DB, Hartwell JL, Leiter J (1957) Distribution of tumor-damaging lignans among conifers. J Natl Cancer Inst 18:83–99

    PubMed  CAS  Google Scholar 

  • Forsey SP, Rajapaksa D, Taylor NJ, Rodrigo R (1989) Comprehensive synthetic route to eight diastereomeric Podophyllum lignans. J Org Chem 54:4280–4290

    Article  CAS  Google Scholar 

  • Gadek PA, Quinn CJ (1982) Amentoflavones from Callitris species. Phytochemistry 21:248–249

    Article  CAS  Google Scholar 

  • Gadek PA, Quinn CJ (1983) Biflavones of the subfamily Callitroideae, Cupressaceae. Phytochemistry 22:969–972

    Article  CAS  Google Scholar 

  • Gadek PA, Quinn CJ (1988) Pitting of transfusion tracheids on Cupressaceae. Aust J Bot 36:81–92

    Article  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gay FJ, Evans RW (1968) The status and termite durability of Northern cypress pine. Aust For 32:80–91

    Article  Google Scholar 

  • Godfrey JD, Schultz AG (1979) The total synthesis of dl-dihydrocallitrisin. Tetrahedron Lett 35:3241–3244

    Article  Google Scholar 

  • Gough LJ (1968) Callitrisic acid: a new diterpenoid. Tetrahedron Lett 3:295–298

    Article  Google Scholar 

  • Herbin GA, Robins PA (1968) Studies on plant cuticular waxes. III. The leaf wax alkanes and ω-hydroxy acids of some members of the Cupressaceae and Pinaceae. Phytochemistry 7:1325–1337

    Article  CAS  Google Scholar 

  • Heyenga AG, Lucas JA, Dewick PM (1990) Production of tumour-inhibitory lignans in callus cultures of Podophyllum hexandrum. Plant Cell Rep 9:382–385

    Article  CAS  Google Scholar 

  • Holthuis JJM (1988) Etoposide and teniposide. Bioanalysis, metabolism and clinical pharmokinetics. Pharm Weekbl (Sci) 10:101–116

    Article  CAS  Google Scholar 

  • Hooker JD, Jackson BD (1895) Index Kewensis, 2 vols and 18 supplements to 1987. Clarendon, Oxford

    Google Scholar 

  • Hunter RA (1977) The utilization of wheat grain and hoop pine (Callitris columellaris) sawdust by Merino wethers. Aust J Exp Agric Anim Husb 17:55–58

    Article  Google Scholar 

  • Issell BF, Rudolph AR, Louie AC (1984) Etoposide (VP-16-213): an overview. In: Issell BF, Muggaia FM, Carter SK (eds) Etoposide (VP-16-231) current status and new developments. Academic Press, Orlando, pp 1–14

    Google Scholar 

  • Kadkade PG (1981) Formation of podophyllotoxins by Podophyllum peltatum tissue cultures. Naturwissenschaften 68:481–482

    Article  PubMed  CAS  Google Scholar 

  • Kadkade PG (1982) Growth and podophyllotoxin production in callus tissues of Podophyllum peltatum. Plant Sci Lett 25:107–115

    Article  CAS  Google Scholar 

  • Khan IU, Ansari WH (1987) Flavonol glycosides from Callitris glauca. Phytochemistry 26:1223–1222

    Article  Google Scholar 

  • Khan NA, Kamil M, Ilyas (1979) Flavonoid constituents of Cupressus australis Desf. (Cupressaceae). Ind J Chem 17B: 536–537

    CAS  Google Scholar 

  • Kier LB, Fitzgerald DB, Burgett S (1963) Isolation of podophyllotoxin from Callitris drummondii. J Pharm Sci 52: 502–503

    Article  PubMed  CAS  Google Scholar 

  • Konar RN, Mittra R (1977) Developmental anatomy of Callitris glauca Phytomorphology 27:88–92

    Google Scholar 

  • Kriissmann G (1985) Manual of cultivated conifers. Timber, Portland, Oregon. pp 58–60

    Google Scholar 

  • Li HL (1953) A reclassification of Libocedrus and Cupressaceae. J Arnold Arbor 34:17–34

    Google Scholar 

  • Lim CK, Ayres DC (1983) Highlperformance liquid chromatography of aryltetrahydronaphthalene lignans. J. Chromatogr 255:247–254

    Article  CAS  Google Scholar 

  • Logan AF, Ward JV, Phillips FH, Balodis, V, Schaumberg JB (1985) White cypress pine (Callitris columellaris) residues for pulpwood. Appita 38:188–194

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132

    Article  Google Scholar 

  • Paknikar SK, Patel J (1988) A biomimetic one-step synthesis of (± )−3,10-dihydroxydielmentha-5,11-diene-4,9-dione. Chem Ind 16:529–530

    Google Scholar 

  • Picman AK (1986) Biological activities of sesquiterpene lactones. Biochem Syst Ecol 14:255–281

    Article  CAS  Google Scholar 

  • Rodriguez E, Towers GHN, Mitchell JC (1976) Biological activities of sesquiterpene lactones (review). Phytochemistry 15:1573–1580

    Article  CAS  Google Scholar 

  • Rudman P (1964) Guaiol, α-,β,γ-eudesmol and cryptomeridiol from Callitris columellaris F. Muell. Chem Ind 19:808–809

    Google Scholar 

  • Rudman P (1965) The causes of natural durability in timber. Pt. XVII. the causes of decay and termite resistance in Callitris columellaris F. Muell. Holzforschung 19:52–57

    Article  CAS  Google Scholar 

  • Scott L (1970) Temperatures for testing germination of Callitris seeds. Aust For Res 4:37–40

    Google Scholar 

  • Siva Prasad J, Krishnamurty HG (1977) 4-Epiisowmmunic acid and amentoflavone from Callitris rhomboidea. Phytochemistry 16:801–803

    Article  CAS  Google Scholar 

  • Sporne KR (1969) The morphology of gymnosperms. Hutchinson, London, 127 pp

    Google Scholar 

  • Stähelin H, Von Wartburg A (1989) From podophyllotoxin glucoside to etoposide. Progr Drug Res 33:169–266

    Article  Google Scholar 

  • Takaso T, Tomlinson PB (1989) Cone and ovule development in Callitris (Cupressaceae-Callitroideae). Bot Gaz 150:378–390

    Article  Google Scholar 

  • Thompson J, Johnson LAS (1986) Callitris glaucophylla, Australia’s white cypress pine — a new name for an old species. Telopea 2:731–736

    Google Scholar 

  • Van den Berghe DA, Ieven M, Mertens F, Vlietinck, Lammens E (1978) Screening of higher plants for biological activities. II Antiviral activity. Lloydia 41:463–471

    Google Scholar 

  • Van Uden W, Pras N, Visser JF, Malingré ThM (1989) Detection and identification of podophyllotoxin produced by cell cultures derived from Podophyllum hexandrum Royle. Plant Cell Rep 8:165–168

    Article  Google Scholar 

  • Van Uden W, Pras N, Malingré ThM (1990a) On the improvement of the podophyllotoxin production by phenylpropanoid precursor feeding to cell cultures of Podophyllum hexandrum Royle. Plant Cell Tissue Organ Cult 23:217–224

    Google Scholar 

  • Van Uden W, Pras N, Malingré: ThM (1990b) The accumulation of podophyllotoxin-β-D-glucoside by cell suspension cultures derived from the conifer Callitris drumrnondii. Plant Cell Rep 9:257–260

    Google Scholar 

  • Vickery JR, Whitfield FB, Ford GL, Kennett BH (1984) The fatty acid composition of Gymnospermae seed and leaf oils. J Am Oil Chem Soc 61:573–575

    Article  CAS  Google Scholar 

  • Weissmann G, Dietrichs HH (1975a) The effectiveness of l-citronellic acid and similar compounds to Reticulitermes species. Holzforschung 29:68–71

    Article  CAS  Google Scholar 

  • Weissmann G, Dietrichs HH (1975b) The termiticidal activity of the extractives from Callitris and their structural relations. Holz Roh-Werkstoff 33:54–56

    Article  CAS  Google Scholar 

  • Willuhn G (1987) Sesquiterpenlactone, potentielle Leitsustanzen fur die Arzneistoffindung. Dtsch Apoth Ztg 127:2511–2517

    CAS  Google Scholar 

  • Windholz M (ed) (1976) The Merck Index. 9th end. Rahway, New York, 1082 pp

    Google Scholar 

  • Woerdenbag HJ, Van Uden W, Frijlink HW, Lerk CF, Pras N, Malingré (1990) Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as a β-cyclodextrin complex. Plant Cell Rep 9:97–100

    Article  CAS  Google Scholar 

  • Yazaki Y (1983) Volatility of extractive components in white cypress pine (Callitris columellaris F. Muell.). Holzforschung 37:231–235

    Article  CAS  Google Scholar 

  • Yazaki Y, Hillis WE (1977) Components of the extractives from Callitris columellaris F. Muell. heartwood which affect termites. Holzforschung 31:188–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Uden, W., Pras, N. (1993). Callitris spp. (Cypress Pine): In Vivo and In Vitro Accumulation of Podophyllotoxin and Other Secondary Metabolites. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants V. Biotechnology in Agriculture and Forestry, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58062-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58062-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63459-8

  • Online ISBN: 978-3-642-58062-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics