Advertisement

Datenflußarchitekturen

  • Wolfgang K. Giloi
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

In einem rein sequentiellen Programmiermodell ist das Resultat — selbst wenn es fehlerhaft ist — immer reproduzierbar. Diese wünschenswerte Eigenschaft, die es leichter macht, Fehler zu lokalisieren und zu korrigieren, ist bei der parallelen Ausführung imperativer Programme, bei der von der Ausführungszeit abhängige, nicht-reproduzierbare Fehler auftreten können, nicht mehr unbedingt gewährleistet. Es können Fehler entstehen, die weder zur Übersetzungszeit noch zur Laufzeit systematische zu eliminieren sind. Im funktionalen Programmierstil ist das Resultat einer Berechnung prinzipiell eine zeitunabhängig Funktion der Eingabe. Dadurch kann ein nicht-reproduzierbares Verhalten bei der Parallelarbeit grundsätzlich nicht auftreten.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 9

  1. [AaC 86]
    Arvind, Culler D.E.: Dataflow Architectures, in: Annual Reviews in Computer Science Vol.1, Annuals Reviews Inc., Palo Alto, CA 1986, 225–253Google Scholar
  2. [AaG 77]
    Arvind, Gostelow K.P.: A Computer Capable of Exchanging Processors for Time, in Gilchrist B.(ed.): Information Processing 77, North-Holland, Amsterdam 1977, 849–853Google Scholar
  3. [AaG 82]
    Arvind, Gostelow K.P.: The U-Interpreter, IEEE COMPUTER (Feb. 1982), 42–49Google Scholar
  4. [AaK 81]
    Arvind, Kathail V.: A Multiple Processor Dataflow Machine That Supports Generalised Procedures, Proc. 8th Annual Symp. on Computer Architecture (1981), 291–302Google Scholar
  5. [AaN 90]
    Arvind, Nikhil R.S.: Executing a Program on the MIT Tagged-Token Dataflow Architecture, IEEE Trans. on Computers 39,3 (March 1990), 300–318CrossRefGoogle Scholar
  6. [AaT 80]
    Arvind, Thomas R.E.: I-Structures: An Efficient Data Type for Functional Languages, MIT Laboratory for Computer Science, Computational Structures Group Memo 178Google Scholar
  7. [ACK 82]
    Ackerman W.B.: Data Flow Languages, IEEE COMPUTER 15,2 (Feb. 1982), 15–25CrossRefGoogle Scholar
  8. [Aea 84]
    Arvind, Culler D.E., Iannuci R.A., Kathail V., Pingali K., Thomas R.E.: The Tagged Token Dataflow Architecture, Tech. Report, MIT Laboratory for Computer Science (Oct 1984)Google Scholar
  9. [AGP 80]
    Arvind, Gostelow K.P., Plouffe W.: An Asynchronous Programming Language and Computing Machine, Tech. Report, Dept. of Information and Computer Science, UC Irvine (June 1980)Google Scholar
  10. [ANP 89]
    Arvind, Nikhil R.S., Pingali K.K.: I-Structures: Data Structures for Parallel Computing, MIT Laboratory for Computer Science, Computational Structures Group Memo 269 (March 1989)Google Scholar
  11. [BAC 73]
    Backus J.: Programming Language Semantics and Closed Applicative Language, ACM Symposium on Principles of Programming Languages, Boston (Oct. 1973), 71–86Google Scholar
  12. [BAC 78]
    Backus J.: Can Programming be Liberated From the von Neumann Style ? A Functional Style and Its Algebra of Programs, CACM 21,8 (Aug. 1978), 613–648MathSciNetzbMATHGoogle Scholar
  13. [BaG 90]
    Böhm A.P.W., Gurd J.R.: Iterative Instructions in the Manchester Dataflow Computer, IEEE Trans. Parallel and Distributed Systems 1,2 (April 1990), 129–139CrossRefGoogle Scholar
  14. [BaT 88]
    Böhm A.P.W., Teo Y.M.: Resource Management in a Multi-Ring Dataflow Machine, in Jesshope and Reinartz(eds.): CONPAR 1988, Cambridge University Press 1989, 566–577Google Scholar
  15. [BER 71]
    Berkling K.J.: A Computing Machine Based on Tree Structures, IEEE Trans. on Computers C-20,4 (April 1971), 404–418CrossRefGoogle Scholar
  16. [BGT 89]
    Böhm A.P.W., Gurd J.R., Teo Y.M.: The Effect of Iterative Instructions in Dataflow Computers, Proc. 1989 Internal. Conf. on Parallel Processing, IEEE Computer Society order no. 1935, 201–208Google Scholar
  17. [CaH 79]
    Comte D., Hifdi N.: Lau-Multiprocessor: Microfunctional Description and Technological Choices, Proc. 1st Internal. Conf. on Parallel & Distributed Processing, Toulouse, France 1979, 8–15Google Scholar
  18. [CHU 41]
    Church A.: The Calculi of Lambda-Conversion, Annals Math. Studies 6, Princeton University Press, Princeton NJ 1941Google Scholar
  19. [DAI 88]
    Dai K.: Large-Grain Dataflow Computation and Its Architectural Support, Dissertation, Technische Universität Berlin, FB Informatik 1988Google Scholar
  20. [DaM 75]
    Dennis J.B., Misunas D.P.: A Preliminary Architecture for a Basic Data Flow Processor, Proc. 2nd Annual Symp. on Computer Architecture, IEEE Catalog no. 75CH0916-7C (1975), 126–132Google Scholar
  21. [DML 77]
    Dennis J.B., Misunas D.P., Leuung C.K.: A Highly Parallel Processor Using a Data Flow Machine Language, MIT Laboratory for Computer Science, Computation Structures Group Memo 134 (Jan. 1977)Google Scholar
  22. [GaB 78]
    Giloi W.K., Berg H.K.: Data Structure Architectures — A Major Operational Principle, Proc. 5th Annual Sympos. on Computer Architecture (1978), IEEE Catalog no. 78CH1253-4C, 44–51Google Scholar
  23. [GaB 83]
    Giloi W.K., Behr P.: Hierarchical Function Distribution — A Design Principle for Advanced Multicomputer Architectures, Proc. 10th Internat. Sympos. on Computer Architecture (1983), IEEE Catalog no. 83CH1889-5, 318–325Google Scholar
  24. [GaG 82]
    Giloi W.K., Güth R.: Concepts and Realization of a High-Performance Data Type Architecture, Internat. Journal of Computer and Information Sciences 11,1 (Jan. 1982), 25–54zbMATHCrossRefGoogle Scholar
  25. [GaT 79]
    Gostelow K.P., Thomas R.E.: Performance of a Simulated Dataflow Computer, IEEE Trans. Computers C-29,10 (Oct. 1980), 905–919CrossRefGoogle Scholar
  26. [GaW80]
    Gurd J.R., Watson I.: Data Driven Systems for High-Speed Parallel Computing (part I and II), Computer Design (June and July 1980), 97–106Google Scholar
  27. [Gea86]
    Gurd J.R., Barahona P.M.C.C, Böhm A.P.W., Kikham C.C., Parker A.J., Sargeant J., Watson I.: Fine-Grain Parallel Computing: The Dataflow Approach, in Treleaven and Vaneshi(eds.): Future Parallel Computers, Springer-Verlag, LNCS 272, 82–152Google Scholar
  28. [GKW 85]
    Gurd J.R., Kirkham C.C., Watson I.: The Manchester Prototype Dataflow Computer, CACM 28,1 (Jan. 1985), 34–52Google Scholar
  29. [GUE 82]
    Güth R.: Entwurf einer Datentyparchitektur, Dissertation, Technische Universitat Berlin, FB Informatik 1982Google Scholar
  30. [Hea 87]
    Hiraki K., Nishida K., Sekiguchi S., Shimada T., Yuba T.: The SIGMA-1 Dataflow Supercomputer: A Challenge for New Generation Supercomputing Systems, J. of Information Procesing 10,4 (April 1987), 219–226Google Scholar
  31. [KaG 86]
    Kawakami K., Gurd J.R.: A Scalable Dataflow Structure Store, Proc. 13th Annual Internat. Sympos. on Computer Architecture, IEEE Catalog no. 86CH2291-3, 243–250Google Scholar
  32. [KaM 66]
    Karp R.M., Miller R.E.: Properties of a Model for Parallel Computations: Determinacy, Termination, Queuing, SIAM J. Applied Math 14 (Nov. 1966), 1390–1411MathSciNetzbMATHCrossRefGoogle Scholar
  33. [KLU 83]
    Kluge W.E.: Cooperating Reduction Machines, IEEE Trans. on Computers C-32, 11 (Nov. 1983), 1002–1012CrossRefGoogle Scholar
  34. [KLU 92]
    Kluge W.E.: The Organization of Reduction, Data Flow, and Control Flow Systems, The MIT Press, Cambridge, Mass. 1992Google Scholar
  35. [MIR 77]
    Miranker G.S.: Implementation of Procedures on a Class of Data How Processors, Proc. 1977 Internat. Conf. on Parallel Processing, IEEE Catalog no. 77CH1253-4C, 77–86Google Scholar
  36. [PaC 90]
    Papadopoulos G.M., Culler D.E.: Monsoon: An Explicit Token Store Dataflow Architecture, Proc. 17th I Annual nternat. Sympos. on Computer Architecture (1990), IEEE Computer Society order no. 2047, 82–91Google Scholar
  37. [PAP 91]
    Papadopoulos G.M.: Implementation of a General Purpose Dataflow Multiprocessor, MIT Press, Cambridge, Mass 1991Google Scholar
  38. [PaT 91]
    Papdopoulos G.M., Traub K.R.: Multithreading: A Revisionist View of Dataflow Architectures, 1991 ACMGoogle Scholar
  39. [SaK 86]
    Sargeant J., Kirkham C.C.: Stored Data Structures on the Mnachester Dataflow Machine, Proc. 13th Annual Internal. Sympos. on Computer Architecture (1986), IEEE Catalog no. 86CH2291-3, 235–242Google Scholar
  40. [SaL 78]
    Shriver B.D., Landry S.P.: An Overview of Dataflow Related Research, Computer Science Department, University of Southwestern Louisiana 1978Google Scholar
  41. [SCH 77]
    Syre J.C., Comte D., Hifdi N.: Pipelining, Parallelism, and Asynchronism in the LAU System, Proc. 1977 Internat. Conf on Parallel Processing, IEEE Catalog no. 77CH1253-4C, 87–92Google Scholar
  42. [Sea 89]
    Sakai S., Yamaguchi Y., Hiraki K., Yuba T.: An Architecture of a Dataflow Single Chip Processor, Proc. 16th Annual Internat. Sympos. on Computer Architecture (1989), 46–53Google Scholar
  43. [SMI 86]
    Schmittgen C: Spezifikation und Realisierung eines Reduktionssystems mit konsequenter Unter-stützung strukturierter Datenobjekte und n-stelliger definierter Funktionen, Dissertation, Technische Universitat Berlin, FB Informatik 1986Google Scholar
  44. [TBH 82]
    Trealeaven P.C., Brownbridge D.R., Hopkins R.P.: Data-Driven and Demand-Driven Computer Architecture, ACM Computing Surveys, Vol. 14,1, Association of Computing Machinery 1982Google Scholar
  45. [UNG 92]
    Ungerer T.: Datenflußarchitekturen, Habilitationsschrift, Universitat Augsburg 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Wolfgang K. Giloi
    • 1
  1. 1.GMD und TU BerlinBerlin

Personalised recommendations