Skip to main content

Zusammenfassung

Die Gewinnung von Informationen über Formänderungen, Spannungen, Kräfte, Werkzeugbeanspruchungen bei realen Umformvorgängen, d. h. mit realen Werkzeugen und Werkstücken in Originalgröße aus realen Werkstoffen bei realen Prozeßbedingungen - Temperaturen, Werkzeuggeschwindigkeiten, Schmierstoffeauf realen Umformmaschinen stößt in der Regel auf große meßtechnische Schwierigkeiten und erfordert einen großen Zeitaufwand. Hinzu kommt, daß reale Umformmaschinen - Pressen, Hämmer - meist nur im Produktionsbetrieb verfügbar sind; systematische Experimente stören aber die Produktion und lassen sich daher meist nicht in notwendiger Breite und Tiefe durchführen. Man hat daher schon früh bei der Erforschung von Umformprozessen nach anderen Möglichkeiten gesucht, den realen Prozeß so abzuwandeln bzw. zu simulieren, daß mit verringertem Aufwand unter praxisnahen Bedingungen möglichst vielfältige Informationen erhalten werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 13

  1. Tresca, H.: Sur l’écoulement des corps solides soumis à des fortes pressions. C.R. Acad. Sci. Paris (1864 II) 754ff.

    Google Scholar 

  2. v. Obermayer, A.: Versuche über den Ausfluß plastischen Tons. s.-B. Akad. Wiss. Wien 58 (1868) 737 ff.

    Google Scholar 

  3. Massey, H.F.: üThe Flow of Metal During Forging. Proc. Manch. Assoc. Engrg. (1921/22) 21 ff.

    Google Scholar 

  4. Schunck, H.: Über die Verteilung der Anstrengung und den Stauchvorgang in zylindrischen Druckkörpern. Dissertation Techn. Hochsch. Aachen. Aachen: 1927.

    Google Scholar 

  5. Fröhlich, K.: Versuche zur Ermittlung des Spannungsverlaufs in Modellen aus durchsichtigen Kunststoffen. Z.f. tech. Physik (139) 329 ff.

    Google Scholar 

  6. Orowan, E.: The Calculation of Roll Pressure in Hot and Cold Flat Rolling. Proc. Inst. Mech. Engrg. 150 (1943) 140ff.

    Google Scholar 

  7. Green, A. P.: The Use of Plasticine Models to Simulate the Plastic Flow of Metals. Phil. Mag. Sen 7, 42 (1951) 365 ff. und 900 ff.

    Google Scholar 

  8. Holmquist, J.L.: Investigation of the Piercing Process by Means of Wax Billets. Iron Steel Engrg. 29 (1952) 53 ff.

    Google Scholar 

  9. Bodsworth, C.; Hailing, J.; Barton, J. W: The Use of Paraffin Wax as a Model Material to Simulate the Plastic Deformation of Metals. Part I-A Preliminary Investigation into the Mechanical Properties of Paraffin Wax. J. Iron and Steel Int. 183 (1957) 375 ff.

    Google Scholar 

  10. Barton, J. W.; Bodsworth, C.; Hailing, J.: The Use of Paraffin Wax as a Model Material to Simulate the Plastic Deformation of Metals. Part II-Practical Applications of this Technique. J. Iron and Steel Inst. 188 (1958) 321 ff.

    Google Scholar 

  11. Mönch, E.: Der heutige Stand der Photoplastizität. Schweizer Archiv für angew. Wiss. u. Technik 5 (1959) 1 ff.

    Google Scholar 

  12. Hertel, H.: Modellversuche zur optimalen Durchbildung von Pressteilen. Luftfahrttechnik 7 (1961) 114 ff.

    Google Scholar 

  13. Ito, K.: New Model Materials for Photoelasticity and Photoplasticity. Exp. Mechanics 2 (1962) 373 ff.

    Article  Google Scholar 

  14. Brill, K.: Modellwerkstoffe für die Massivumformung von Metallen. Dissertation Techn. Hochsch. Hannover: 1963.

    Google Scholar 

  15. Brill, K.: Plastilin und Natrium als Modellwerkstoffe. Annals of CIRP 12 (1963) 69–74.

    Google Scholar 

  16. Heuer, P.-J.: Modellversuche und deren Gesetzmäßigkeiten zur Untersuchung von Fließvorgängen beim Gesenkpressen von vorwiegend Leichtmetall-Integralbauteilen. Bericht TU-Luft-fahrzeugbau 60/10. Berlin: 1960.

    Google Scholar 

  17. Brill, K.: Anwendung von Modellwerkstoffen zur Ermittlung der geometrischen und dynamischen Versuchsgrößen beim Gesenkformen. Schmiedetechnische Mitteilungen, Werkstatttechnik 53 (1963) 537–542.

    Google Scholar 

  18. Blazynski, T. Z.; Cole, I. M.: An Analysis of Redundant Deformations in Rotary Piercing. Proc. Instn. Mech. Engrs. 178 (1963-64) 867.

    Article  Google Scholar 

  19. Hailing, J.; Mitchell, L. A.: An Experimental Study of Symmetrical Extrusion Using Paraffin Wax as a Model Material. In: Proc. 5th Int. Mach. Tool Design Res. Conf. (1964). Oxford: Pergamon Press 1965.

    Google Scholar 

  20. Chang, K.T.; Brittain, T. M.: An Investigation of Analog Materials for the Study of Deformations in Metal Processing Simulations. Trans. ASME, Paper No. 67-WA/P-rod.-9 (1967).

    Google Scholar 

  21. Blazynski, T.Z.: An Assessment of a Combined Rotary Piercing and Elongating Process for Tube Making. J. Inst. Metals 95 (1967) 97 ff.

    Google Scholar 

  22. Aku, S. Y.; Slater, R. A.C.; Johnson, W: The Use of Plasticine to Simulate the Dynamic Compression of Prismatic Blocks of Hot Metal. Int. J. Mech. Sci. 9 (1967) 495–525.

    Google Scholar 

  23. Rice, W.B.; Salmon, R.; Vaish, J.P.: A Study of Chip Formation Using Paraffin Wax to Simulate Metals. Trans. Eng. Inst. Canada 11 (1968) B–2.

    Google Scholar 

  24. Blazynski, T.Z.; Jubb, C.: An Assessment of Redundant Shears in the Combined Rotary-Piercing-Elongating Process. J. Strain Anal. 3 (1968) 4 ff.

    Article  Google Scholar 

  25. Blazynski, T.Z.: Theoretical and Experimental Assessments of Roll and Plug Forces and Roll Torques in the Combined Rotary-Piercing-Elongating Process. Int. J. Mech. Sci. 10 (1968) 903 ff.

    Article  Google Scholar 

  26. Blazynski, T.Z.: Rate of Determination and Redundant Shears in the Combined Rotary Piercing-Elongating Process. J. Strain Analysis 4 (1968) 264 ff.

    Article  Google Scholar 

  27. Rice, W.B.; Iyengar, H.S.R.: An Experimental Investigation of Fluid Film Lubrication in Hydrostatic Extrusion Using Wax to Simulate Metals. Annals of CIRP 18 (1970) 193–198.

    Google Scholar 

  28. Slater, R. A. C.; Appleton, E.: Some Experiments With Model Materials to Simulate the Rotary Forging of Hot Steel. Proc 11th MTDR Conf Vol. B (1970) 1117 ff.

    Google Scholar 

  29. Wuerscher, A.; Rice, W. B.: An Experimental Investigation of Lubrication in Hydrostatic Extrusion Using Wax as a Model Material. J. Eng. Ind. 94 (1972) 913 ff.

    Article  Google Scholar 

  30. Fritz, H.; Maag, A.: Plastilinartige Knetwerkstoffe für Modellversuche in der Umformtechnik. Ind.-Anz. 94 (1972) 880–883.

    Google Scholar 

  31. Garner, J.N.; Rice, W.B.: An Experimental Investigation of Central Burst Formation During Hydrostatic Extrusion Using Wax to Simulate Metal. Annals of CIRP 23 (1974) 69–70.

    Google Scholar 

  32. Fricker, D.C.; Wanheim, T.: Low Friction Coefficient Estimation for Model Material Experiments. Wear 27 (1974) 303 ff.

    Article  Google Scholar 

  33. Egerton, D.; Rice, W.B.: An Experimental Investigation of Stick-Slip in Hydrostatic Extrusion Using Wax to Simulate Metals. J. Eng. Ind. (1976) 795 ff.

    Google Scholar 

  34. Garner, J.N.; Rice, W.B.: Prediction of Conditions of Central Bursting in Hydrostatic Extrusion. Annals CIRP 25 (1976) 165–168.

    Google Scholar 

  35. Garner, J.N.; Rice, W.B.: Experimental Investigation of Surface Cracking during Hydrostatic Extrusion Using Wax to Simulate Metal. Annals of CIRP 27 (1978) 147–150.

    Google Scholar 

  36. Rice, W.B.; Garner, J.N.: Similarities in Mechanics of Extrusion and Continuous Chip Formation. Proc NAMRC VI (1978) 138–141.

    Google Scholar 

  37. Wanheim, T.; Maegaard, V., Danckert, J.: The Physical Modelling of Plastic Working Processes. Proc. 1st Int. Conf. on Technology of Plasticity, Vol. II (1984) 984–996. Tokyo: Jap. Soc. for Technology of Plasticity 1984.

    Google Scholar 

  38. Maegaard, V.: The Use of Model Technique in the Prediction of the Pressure Distribution over the Tool Surfaces in Cold Forging. J. Mech. Work. Tech. 12 (1985) 173–192.

    Article  Google Scholar 

  39. Lippmann, H.: Mechanik des plastischen Fliessens. Berlin Heidelberg New York: Springer Verlag 1981.

    Book  MATH  Google Scholar 

  40. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Englewood Cliffs, New Jersey: Prentice-Hall 1969.

    Google Scholar 

  41. Eringen, A.C.: Mechanics of Continua. New York London Sydney: John Wiley amp; Sons 1967.

    MATH  Google Scholar 

  42. Becker, E.; Bürger, W.: Kontinuumsmechanik. Stuttgart: B.G. Teubner 1975.

    Google Scholar 

  43. Eringen, A.C. (Hrsg.): Continuums Physics, Vol. II. New York San Francisco London: Academic Press 1975.

    Google Scholar 

  44. Prager, W.: Einführung in die Kontinuumsmechanik. Basel Stuttgart: Birkhäuser 1961.

    MATH  Google Scholar 

  45. Truesdell, C. (Hrsg.): Mechanics of Solids, Vol. III. Berlin Heidelberg New York Tokyo: Springer 1984.

    Google Scholar 

  46. Lai, W.M.; Rubin, O.; Krempl, E.: Introduction to Continuum Mechanics. Oxford: Pergamon Press 1982.

    Google Scholar 

  47. Haupt, P.: Continuum Mechanics for Engineers. Lecture Notes of a Course Held at the Middle East Technical University. Ankara: 1987.

    Google Scholar 

  48. Marsden, J.E.; Hughes, T.J.R.: Mathematical Foundations of Elasticity. Englewood Cliffs, New Jersey: Prentice Hall 1983.

    MATH  Google Scholar 

  49. Wang, N.-M.; Wenner, M. L.: Elastic-Viscoplastic Analysis of Simple Stretch Forming Problems. In: Koistinen, D. P., Wang, N.-M. (Hrsg.) Mechanics of Sheet Metal Forming. New York London: Plenum Press, 1978, S. 367–402.

    Chapter  Google Scholar 

  50. Bauschinger:Über die Veränderung der Elasticitätsgrenze und des Elasticitätsmoduls verschiedener Metalle. Der Civilingenieur (1881) Spalten 289–348.

    Google Scholar 

  51. Tsakmakis, Ch.: Über inkrementelle Materialgleichungen zur Beschreibung großer inelastischer Deformationen. VDI-Fortschrittsberichte, Nr. 36, Düsseldorf: VDI-Verlag 1987.

    Google Scholar 

  52. Hill, R.: The Mathematical Theory of Plasticity. ai]Oxford: Clarendon Press 1985.

    Google Scholar 

  53. Ismar, H.; Mahrenholtz, O.: Technische Plastomechanik. Braunschweig: Friedr. Vieweg amp; Sohn 1979.

    Book  Google Scholar 

  54. Kachanov, L.M.: Fundamentals of the Theory of Plasticity. Moskau: MIR Publishers 1974.

    Google Scholar 

  55. Roll, K.: Einsatz numerischer Näherungsverfahren bei der Berechnung von Verfahren der Kaltmassivumformung. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 66. Berlin Heidelberg New York: Springer 1982.

    Google Scholar 

  56. Gerhardt, J.: Mechanische und thermische Simulation dreidimensionaler Umformvorgänge. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 101. Berlin Heidelberg New York Tokyo: Springer 1988.

    Google Scholar 

  57. Perzyna, P.: Fundamental Problems in Viscoplasticity. Advances in Applied Mechanics 9 (1966), 243–377.

    Article  Google Scholar 

  58. Herbertz, R.: Zur Brauchbarkeit eines starr-viskoplastischen Materialgesetzes bei der Lösung umformtechnischer Probleme mit Hilfe der Finite-Elemente-Methode. Dr.-Ing. Dissertation, Rheinisch-Westfälische Technische Hochschule, Aachen 1982.

    Google Scholar 

  59. Rebelo, N.: Finite Element Modeling of Metalworking Processes for Thermo-Viscoplastic Analysis. Ph.-D. Thesis, University of California, Berkeley 1980.

    Google Scholar 

  60. Johnson, W.; Mellor, P.B.: Engineering Plasticity. London: Van Nostrand Reinhold Company 1978.

    Google Scholar 

  61. McMeeking, R.M.; Rice, J.R.: Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation. Int. J. Solids Structures (1975) 11, 601–616.

    Article  MATH  Google Scholar 

  62. Tekkaya, A.E.: Ermittlung von Eigenspannungen in der Kaltmassivumformung. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 83. Berlin Heidelberg New York Tokyo: Springer 1986.

    Google Scholar 

  63. Lee, E.H.; Mallett, R.L.: Stress and Deformation Analysis of the Metal Extrusion Process. Comp. Meth. Appl. Mech. Eng. (1977) 10, 339–353.

    Article  Google Scholar 

  64. Hughes, T. J. R.: Numerical Implementation of Constitute Models: Rate-Independent Deviatoric Plasticity. In: Proceedings of the Workshop on Theoretical Foundations for Large Scale Computations of Nonlinear Material Behavior. Elanston/Illinois: Northwestern University (1983) 29–57.

    Google Scholar 

  65. Besdo, D.: Zur Formulierung von Stoffgesetzen der Plastomechanik im Dehnungsraum nach Ilyushins Postulat. Ing.-Arch. 51 (1981) 1–8.

    Article  MATH  Google Scholar 

  66. Doltsinis, J.St.: Zur natürlichen Formulierung inelastischer Probleme endlicher Verformungen. Dr.-Ing.-Diss., Universität Stuttgart. Stuttgart: 1980.

    Google Scholar 

  67. Lee, E.H.: Elastic-Plastic Deformation at Finite Strains. J. Applied Mechanics, Trans. ASME 36(1969)3, 1–6.

    Article  MATH  Google Scholar 

  68. Wertheimer, T. B.: Problems in Large Deformation Elasto-Plastic Analysis Using the Finite-Element Method. Ph.-D. Thesis, Stanford University, 1982.

    Google Scholar 

  69. Pinsky, P.M.: A Numerical Formulation for the Finite Deformation Problem of Solids with Rate Independent Constitutive Equations. Report No.: UCB/SESM-81/07, Department of Civil Engineering, University of California, Berkeley, 1981.

    Google Scholar 

  70. Simo, J.C.; Ortiz, M.: A Unified Approach to Finite Deformation Elasto-Plastic Analysis Based on the Use of Hyperelastic Constitutive Equations. Comp. Meths. Appl. Mech. Engg. (1985)49, 221–245.

    Article  MATH  Google Scholar 

  71. Simo, J.C.: Maximum Plastic Dissipation and the Multiplicative Decomposition in Finite Strain Plasticity. In: Proc. Int. Conf. Computational Plasticity. Swansea: Pineridge Press (1987) 1821–1835.

    Google Scholar 

  72. Lubarda, V. A.: Elastic-Plastic Deformation at Finite Strain. Ph.-D. Thesis, Stanford University, 1980.

    Google Scholar 

  73. Marques, J.M.M.C.: Stress Computation in Elastoplasticity. Engineering Computations 1 (1984) 1, 42–51.

    Article  Google Scholar 

  74. Bland, D.R.: The Associated Flow Rule of Plasticity. J. Mech. Phys. Solids 6 (1957) 71–78.

    Article  MathSciNet  MATH  Google Scholar 

  75. Lehmann, Th.: Einige Bemerkungen zu einer allgemeinen Klasse von Stoffgesetzen für große elasto-plastische Formänderungen. Ing.-Arch. 41 (1972), 297–310.

    Article  MATH  Google Scholar 

  76. Nagtegaal, J.C.; de Jong, J.E.: Some Aspects of Nonisotropic Workhardening in Finite Deformation Plasticity. In: Lee, E.H., Mallett, R.L. (Hrsg.): Proceedings of the Workshop on Plasticity of Metals at Finite Strain. Stanford: University Stanford (1981) 65–102.

    Google Scholar 

  77. Huebner, K.H.; Thornton, E.A.: The Finite Element Method for Engineers. New York: John Wiley amp; Sons 1982.

    Google Scholar 

  78. Reddy, J.N.: An Introduction to the Finite Element Method. New York: McGraw-Hill 1986.

    Google Scholar 

  79. Bathe, K.-J.: Finite Element Procedures in Engineering Analysis. Englewood Cliffs: Prentice Hall 1982.

    Google Scholar 

  80. Zienkiewicz, O.C.: The Finite Element Method. London: McGraw-Hill 1977.

    MATH  Google Scholar 

  81. Desai, C.S.; Abel, J.F.: Introduction to the Finite Element Method. New York: Van Nostrand Reinhold 1972.

    MATH  Google Scholar 

  82. Gallagher, R.H.: Finite Element Analysis: Fundamentals. Englewood Cliffs: Prentice-Hall 1975.

    Google Scholar 

  83. Irons, B.M.; Ahmed, S.: Techniques of Finite Elements. Chichester: Ellis Horwood 1980.

    Google Scholar 

  84. Owen, D.R. J.; Hinton, E.: Finite Elements in Plasticity: Theory and Practice. Swansea: Pineridge 1980.

    MATH  Google Scholar 

  85. Segerlind, L. J.: Applied Finite Element Analysis. New York: John Wiley amp; Sons 1976.

    MATH  Google Scholar 

  86. Rao, S.S.: The Finite Element Method in Engineering. Oxford: Pergamon Press 1982.

    MATH  Google Scholar 

  87. Argyris, J.; Mlejnek, H.-P.: Die Methode der Finiten Elemente, Bd. I. Braunschweig: Friedr. Vieweg amp; Sohn 1986.

    MATH  Google Scholar 

  88. Hughes, T.J.R.: The Finite Element Method. Englewood Cliffs: Prentice-Hall 1987.

    MATH  Google Scholar 

  89. Schwarz, H.R.: Methode der finiten Elemente. Stuttgart: Teubner 1980.

    Google Scholar 

  90. Grandin, H.: Fundamentals of the Finite Element Method. New York: Macmillan 1986.

    Google Scholar 

  91. Owen, E.; Hinton, D.R. J.: Finite Element Software for Plates and Shells. Swansea: Pineridge Press 1984.

    MATH  Google Scholar 

  92. Ramm, E.: Finite Elemente für Tragwerkberechnungen. Vorlesungsumdruck, Institut für Baustatistik, Universität Stuttgart. Stuttgart: 1985.

    Google Scholar 

  93. Törnig, W.; Spelucci, P.: Numerische Mathematik für Ingenieure und Physiker, Bd. 1, 2. Auflage. Berlin Heidelberg New York: Springer-Verlag 1988.

    Google Scholar 

  94. Markov, A.A.: On Variational Principles in the Theory of Plasticity. Mehkanika (1947) 11, 339–350.

    MATH  Google Scholar 

  95. Lung, M.: Ein Verfahren zur Berechnung des Geschwindigkeits-und Spannungsfeldes bei stationären starr-plastischen Formänderungen mit finiten Elementen. Dr.-Ing. Dissertation, Technische Universität Hannover. Hannover: 1971.

    Google Scholar 

  96. Ramm, E.: Geometrisch nichtlineare Elastostatik und Finite Elemente. Habilitationsschrift. Universität Stuttgart. Stuttgart: 1976.

    Google Scholar 

  97. Kobayashi, S.; Oh, S.-L; Altan, T.: Metal Forming and the Finite Element Method. New York: Oxford University Press 1989.

    Google Scholar 

  98. Matthies, H.; Strang, G.: The Solution of Nonlinear Finite Element Equations, Int. J. Num. Meth. Engng. (1979) 14, 1613–1626.

    Article  MathSciNet  MATH  Google Scholar 

  99. Tekkaya, A.E., et al: Finite-Element-Simulation of Metal Forming Processes Using Two Different Material-Laws. In: Proceeding of the I. International Workshop Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I), Stuttgart, June 3, 1985. Berlin Heidelberg New York: Springer (1986) 50–90.

    Chapter  Google Scholar 

  100. Prager, W.: An Elementary Discussion of Definitions of Stress Rate. Q. Appl. Math. (1960) 18, 403–407.

    MathSciNet  Google Scholar 

  101. McMeeking, R.M.; Rice, J.R.: Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation. Int. J. Solids Structures (1975) 11, 601–616.

    Article  MATH  Google Scholar 

  102. Hill, R.: Some Basic Principles in the Mechanics of Solids Without a Natural Time. J. Mech. Phys. Solids (1959) 7, 209–225

    Article  MathSciNet  MATH  Google Scholar 

  103. Nagtegaal, J.C.; Rebelo, N.: On the Development of a General Purpose Finite Element Program for Analysis of Forming Processes. Int. J. Num. Meth. Engg. (1988) 25, 113–131.

    Article  MATH  Google Scholar 

  104. Simo, J.C.; Taylor, R.L.: Consistent Tangent Operators for Rate-Independent Elastoplasticity. Comp. Meth. Appl. Mech. Eng. (1985) 51, 101–118.

    Article  MathSciNet  Google Scholar 

  105. Krieg, R. D.; Krieg, D. B.: Accuracies of Numerical Solution Methods for their Elastic-Perfectly Plastic Model. J. Pressure Vessel Techn. (1977) 99, 510, 515

    Google Scholar 

  106. Hughes, T. J.R.; Winget, J.: Finite Rotations Effects in Numerical Integration of Rate Constitutive Equations Arising in Large-Deformation Analysis. Int. J. Num. Meth. Engg. (1980) 15, 1862–1867.

    Article  MathSciNet  MATH  Google Scholar 

  107. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Englewood Cliffs: Prentice Hall 1982.

    Google Scholar 

  108. Hora, P.; Vu, T. C.; Wollrab, P.; Reissner, J.: Simulation of the Forming Process for Irregularly Shaped Autobody Panels. Proc 2nd Int. Conf. Technol. of Plasticity (2. ICTP), Stuttgart, August 1987.

    Google Scholar 

  109. Schoop, H.: Schalentheorie mit 6 kinematischen Freiheitsgraden bei großen Verschiebungen. ZAMM 67 (1987) 4, T. 237–239.

    Google Scholar 

  110. Hillmann, M., et al.: A Highly Vectorized FE-Program for Sheet Metal Forming Simulation for the Automotive Industry. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI Berichte 894.

    Google Scholar 

  111. Irons, B.M.: Quadrature Rules for Brick Boxed Finite Elements. Int. J. Num. Meth. Eng. (1971) 3, 193–194.

    Article  Google Scholar 

  112. Malkus, D. S.; Hughes, T. J. R.: Mixed Finite Element Methods-Reduced and Selective Integration Techniques: A Unification of Concepts. Comp. Meth. Appl. Mech. Eng. (1978) 15, 63–81.

    Article  MATH  Google Scholar 

  113. Hughes, T. J.R.: Generalization of Selective Integration Procedures for Anisotropic and Nonlinear Media. Int. J. Num. Meth. Eng. (1980) 15, 1413–1418.

    Article  MATH  Google Scholar 

  114. Steck, E.: Numerische Behandlung von Verfahren der Umformtechnik. Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 22. Essen: Girardet 1971.

    Google Scholar 

  115. Geiger, M.; Steck, E.: Näherungsrechnung zur Ermittlung des Spannungs-und Bewegungszustandes beim Fließen eines starrplastischen Werkstoffes. Industrie-Anzeiger (1967) 89(81), 1778–1781.

    Google Scholar 

  116. Becker, M.: The Principles and Applications of Variational Methods. Res. Monogr. (MIT-Press 1964) 27.

    Google Scholar 

  117. Finlayson, B. A., Scriven, L.E.: The Method of Weighted Residuals-a Review. Appl. Mech. Rev. (1966) 19, 735–748.

    Google Scholar 

  118. Roll, K.; Rebholz, M.: Ein Näherungsverfahren für die Berechnung von Umformvorgängen. Rheol. Acta(1979) 18, 5–85.

    Google Scholar 

  119. Schacher D.: Kaltmassivumformen von Sintermetall. Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 47. Essen: Girardet 1978.

    Google Scholar 

  120. Pohl, W.: Ein Verfahren zur näherungsweisen Berechnung der Wärmeentwicklung und der Temperaturverteilung beim Kaltstauchen von Metallen. Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 23. Essen: Girardet 1972.

    Google Scholar 

  121. Dalheimer, R.: Beitrag zur Frage der Spannungen, Formänderungen und Temperaturen beim axialsymmetrischen Strangpressen. Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 20. Essen: Girardet 1969.

    Google Scholar 

  122. Roll, K.: Comparison of Different Numerical Methods for the Calculation of Metal Forming Processes. Annals of the CIRP 79 (1979) 28, 141–146.

    Google Scholar 

  123. Woo, D. M.: The Analysis of Axisymmetric Forming of Sheet Metal and the Hydrostatic Bulging Process. Int. J. Mech. Sci. (1964) 6, 303–317.

    Article  Google Scholar 

  124. Woo, D.M.: On the Complete Solution of the Deep-Drawing Problem. Int. J. Mech. Sci. (1968) 10, 83–94.

    Article  Google Scholar 

  125. Kaftanoglu, B.; Tekkaya, A.E.: Complete Numerical Solution of the Axisymmetric Deep-Drawing Problem. Trans. ASME, J. Eng. Mat. and Techn. (1981) 1103, 326–332.

    Article  Google Scholar 

  126. Reissner, J.; Hora, P.; Ehrismann, R.: Fortschritte in der FE-und FD-Simulation von Blechumformprozessen. 3. Umformtechnisches Kolloquium Darmstadt, Darmstadt, 16.–17. März 1988.

    Google Scholar 

  127. Reissner, J.; Ehrismann, R.: Computer-Aided Deep-drawing of Two-Part Cans. Annals CIRP (1987) 36, 1.

    Article  Google Scholar 

  128. Kudo, H.; Matsubara, S.: Joint Examination Project of Validity of Various Numerical Methods for the Analysis of Metal Forming Processes-Report Given and Comments Made at the Round Table Discussion of the Symposium. In: Lippmann, H. (Hrsg.): Metal Forming Plasticity. Berlin Heidelberg New York: Springer Verlag (1979) 378–403.

    Chapter  Google Scholar 

  129. Tekkaya, A.E.: Ein Vergleich unterschiedlicher FE-Berechnungen. Institutskolloquium, Institut für Umformtechnik, Universität Stuttgart, 27. Juni 1983 (unveröffentlicht).

    Google Scholar 

  130. Tekkaya, A.E.; Roll, K.: Analysis of Metal Forming Processes by Different Finite Element Methods. In: Taylor, C., et al. (Hrsg.): Numerical Methods for Nonlinear Problems. Swansea: Pineridge Press (1984) 450–461.

    Google Scholar 

  131. Zienkiewicz, O.C.; Valliapan, S.; King, I. P.: Elasto-Plastic Solutions of Engineering Problems ‘Initial Stress’. Finite Element Approach. Int. J. Num. Meth. Engg. (1969) 1, 75–100.

    Article  MATH  Google Scholar 

  132. Dieterle, K.: Faltenbildung als Verfahrensgrenze beim Stauchen von Hohlkörpern. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 30. Essen: W. Girardet 1975.

    Google Scholar 

  133. Lee, C.H.; Kobayashi, S.: New Solution to Rigid-Plastic Deformation Problems Using a Matrix Method. Trans. ASME, Ser. B, J. Engg. Ind. (1973) 95, 865–873.

    Article  Google Scholar 

  134. Zienkiewicz, O. C.; Godbole, P. N.: Flow of Plastic and Visco-Plastic Solids with Special Reference to Extrusion and Forming Processes. Int. J. Meth. Engg. (1974) 8, 3–16.

    MATH  Google Scholar 

  135. Zienkiewicz, O. C.; Jain, P. C.; Onate, E.: Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions. Int. J. Solids Structures (1978) 14, 15–38.

    Article  Google Scholar 

  136. Thompson, E.G.; Berman, H.M.: Steady State Analysis of Elasto Viscoplastic Flow During Rolling. In: Pittman, J.F.T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 29–37.

    Google Scholar 

  137. McMeeking, R.M.; Rice, J.R.: Finite-Element Formulations for Problems of Large Elastic-Plastic Deformation. Int. J. Solids Structures (1975) 11, 601–616.

    Article  MATH  Google Scholar 

  138. Lee, E.H.; Mallett, R.L.; Yang, W.H.: Stress and Deformation Analysis of the Metal Extrusion Process. Comp. Meth. Appl. Mech. Engg. (1977) 10, 339–353.

    Article  Google Scholar 

  139. Sturgess, C. E. N.; Finite-Element Modelling of Forging. Vorgetragen auf dem Workshop„Advances in Impact Forging“, Houghton/Michigan, 1. Juni 1984.

    Google Scholar 

  140. Wang, N.M.; Wenner, M.L.: Elastic-Viscoplastic Analysis of Simple Stretch Forming Problems. In: Koistinen, D. P.; Wang, N.-M. (Hrsg.): Mechanics of Sheet Metal Forming. New York London: Plenum Press (1978) 367–402.

    Chapter  Google Scholar 

  141. Rebelo, N.; Nakazawa, S.; Wertheimer, T.B.; Nagtegaal, J.C.: A Comparative Study of Algorithms Applied in Finite Element Analysis of Metal Forming Problems. Preprint, MARC Analysis Corporation 1986.

    Google Scholar 

  142. Lehmann, T.: Some Remarks on the Recent Development of the Foundations of the Theory of Plasticity. Steel research (1986) 57, 101–107.

    Google Scholar 

  143. Doltsinis, J. St.; Luginsland, J.; Nölting, S.: Some Development in the Numerical Simulation of Metal Forming Processes. Proc. International Conference on Computational Plasticity, Barcelona, 6–10.4.1987.

    Google Scholar 

  144. Hallquist, J.O.: NIKE2D-A Vectorized Implicit Finite Deformation Finite Element Code Analyzing the Static and Dynamic Response of 2-D Solids with Interactive Rezoning and Graphics. University of California, Lawrence Livermore National Laboratory, Report UCID-19677 (1986) Rev. 1.

    Google Scholar 

  145. Argyris, J.H.; Doltsinis, J. St.; Pimenta, P.M.; Wüstenberg, H.: Thermomechanical Response of Solids at High Strains-Natural Approach. Comp. Meth. Appl. Mech. Engg. (1982) 32, 3–27.

    Article  MATH  Google Scholar 

  146. Zienkiewicz, O.C.; Onate, E.; Heinrich, J.C.: A General Formulation for Coupled Thermal Flow of Metals Using Finite Elements. Int. J. Num. Meth. Engg. (1981) 17, 1497–1514.

    Article  MATH  Google Scholar 

  147. Yu, H.-J.: Berechnung von Abkühlungs-, Umwandlungs-, Schweiß-, sowie Verformungseigenspannungen mit Hilfe der Methode der Finiten Elemente. Dr.-Ing. Dissertation, Universität Karlsruhe. Karlsruhe: 1977.

    Google Scholar 

  148. Osen, W.: Untersuchungen über das kombinierte Quer-Napf-Vorwärts-Fließpressen. Bericht aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 89. Berlin Heidelberg New York Tokyo: Springer 1988.

    Google Scholar 

  149. Gelten, C.; Konter, A.: Application of Mesh Rezoning in the Updated Lagrangian Method to Metal Forming. In: Pittman, J. F. T., et al. (Ed.): Numerical Methods in Industrial Forming Processes, 511.

    Google Scholar 

  150. Dung, N.L.; Mahrenholtz, O.: Progress in the Analysis of Unsteady Metal-Forming Processes Using the Finite-Element-Method. In: Pittman, J. F. T., et al.: Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 187–196.

    Google Scholar 

  151. Mahrenholtz, O.C.; Westerling, C.; Dung, L.: Thermomechanical Analysis of Metal Forming Processes Through the Combined Approach FEM/FDM. In: Simulation of Metal Forming Processes by the Finite Element Method (SIMOP-I). Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 85. Berlin Heidelberg New York: Springer (1986) 19–49.

    Chapter  Google Scholar 

  152. Ficke, J. A.; Oh, S.I.; Malas, J.: FEM Simulation of Closed Die Forging of Isothermal Titanium Disk Forging using ALPID. Proc. NAMRC (1984) 12, 166–172.

    Google Scholar 

  153. Kobayashi, S.: Thermoviscoplastic Analysis of Metalforming Problems by the Finite Element Method. In: Pittman, J.F.T., et al.: Numerical Analysis of Forming Processes. John Wiley amp; Sons (1984) 45–69.

    Google Scholar 

  154. Roll, K.; Tekkaya, A. E.: Prozeßsimulation in der Umformtechnik mit der Methode der finiten Elemente. Teil I: Blech Rohre Profile 32 (1985) 6, 284–289. Teil II: Blech Rohre Profile 32 (1985)7, 327-330.

    Google Scholar 

  155. Mahrenholtz, O.; Dung, N.L.: On Finite Element Methods in Metalworking. Steel Research 57 (1986) 3.

    Google Scholar 

  156. Kobayashi, S.: Rigid-Plastic Finite Element Analysis of Axisymmetric Metal Forming Processes. ASME Winter Annual Meeting, Atlanta 1978. ASME Special Publication PVBPB-025, 49–65.

    Google Scholar 

  157. Chen, C.C.; Kobayashi, S.: Rigid Plastic Finite Element Analysis of Ring Compression. In: Applications of Numerical Methods to Forming Processes. ASME, AMD-Vol. (1978) 28, 163–174.

    Google Scholar 

  158. Chen, C.C.; Kobayashi, S.: Rigid Plastic Finite Element Analysis of Plane-Strain Closed-Die Forging. In: Process Modelling Fundamentals and Applications to Metals. ASM Materials/Metallworking Technology Series. (1980) 167–183.

    Google Scholar 

  159. Lange, K.; Osen, W.: Cold Extrusion Process Combined with Radial Extrusion. Proc. NAMRC XIII (1985) 176–183.

    Google Scholar 

  160. Shima, S.; Mori, K.; Oda, T.; Osakada, K.: Rigid-Plastic Finite Element Analysis of Strip Rolling. Proc. 4th Int. Conf. on Prod. Eng. Tokyo: 82–87.

    Google Scholar 

  161. Li, G.-J.; Kobayashi, S.: Rigid-Plastic Finite-Element Analysis of Plane Strain Rolling. J. Eng. Ind. (1982) 104, 55–64.

    Article  Google Scholar 

  162. Kanazawa, K.; Marcal, P. V.: Finite Element Analysis of the Stell Rolling Process. In: Applications of Numerical Methods to Forming Processes, ASME, AMD-Vol. (1978) 28, 81–83.

    Google Scholar 

  163. Li, G.-J.; Kobayashi, S.: Spread Analysis in Rolling by the Rigid-Plastic Finite Element Method. In: Pittman, J. F. T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 777–786.

    Google Scholar 

  164. Odell, E.I.: A Study of Wall Ironing by the Finite Element Technique. J. Eng. Ind. Vol. 100 (1978)6, 1069–1086.

    Google Scholar 

  165. Hartley, P.; Sturgess, C.; Rowe, G.: A Finite Element Analysis of Extrusion-Forging. Vlth NAMRC (1978) 212–219.

    Google Scholar 

  166. Hartley, P.; Sturgess, C.; Rowe, G.: An Examination of Frictional Boundary Conditions and their Effect in an Elastic-Plastic Finite Element Solution. Proc. 20. MTDR Conference, Birmingham 1979, 157–163.

    Google Scholar 

  167. Roll, K.: Calculation of Metal Forming Processes by Finite Element Method. In: Applications of Numerical Methods to Forming Processes. AMD-Vol. 28 (1978) 67–81.

    Google Scholar 

  168. Rao, S.S.; Kumar, A.: Finite Element Analysis of Cold Strip Rolling. Int. J. Mach. Tool Des. Res. Vol. (1977) 17, S. 159–168.

    Article  Google Scholar 

  169. Key, S. W.; Krieg, R. D.; Bathe, K.-J.: On the Application of the Finite Element Method to Metalforming Processes-Part I. Comp. Meth. Appl. Mech. Eng. (1979) 17/18, 597–608.

    Article  Google Scholar 

  170. Tekkaya, A.E.; Gerhardt, J.: Residual Stresses in Cold-Formed Workpieces. Annals of the CIRP (1985) 34/1, 225–230.

    Article  Google Scholar 

  171. Zienkiewicz, O.C.; Godbole, P.N.: Flow of Plastic and Viscoplastic Solids with Special Reference to Extrusion and Forming Processes. Int. J. Num. Meth. Eng. (1974) 8, 3–16.

    MATH  Google Scholar 

  172. Zienkiewicz, O. C.; Jain, P. C; Onate, E.: Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions. Int. J. Solids Structures (1978) 14, 15–18.

    Article  Google Scholar 

  173. Thompson, E.G.; Berman, H.M.: Steady State Analysis of Elasto-Viscoplastic Flow During Rolling. In: Pittman, J. F. T., et al. (Hrsg.) Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982), 29–37.

    Google Scholar 

  174. Oh, S.I.; Rebelo, N.; Kobayashi, S.: Plastic Deformation of Rate-Sensitive Materials in Metal Forming. In: Lippmann, H. (Ed.): Metalforming Plasticity. Berlin Heidelberg New York: Springer (1979) 273–291.

    Chapter  Google Scholar 

  175. Dawson, P. R.: Viscoplastic Finite Element Analysis of Steady State Forming Processes Including Strain History and Stress Flux Dependence. In: Applications of Numerical Methods to Forming Processes, ASME, AMD-Vol. (1978) 28, 65–66.

    Google Scholar 

  176. Tayal, A.K.; Natarjan, R.: Extrusion of Rate-Sensitive Materials Using a Viscoplastic Equation and the Finite Element Method. Int. J. Mech. Sci. (1981) 23, 89–98.

    Article  MATH  Google Scholar 

  177. Tayal, A.K.; Natarjan, R.: Analysis of Combined Backward-Forward Extrusion by the Finite Element Method. In: Pittman, J.F.T., et al. (Ed.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 247–255.

    Google Scholar 

  178. Oh, S. I.; Lahoti, G. D.; Altan, T: Application of a Rigid-Plastic Finite-Element-Method to Some Metalforming Processes. J. Mech. Work. Techn. (1982) 6, 277–290.

    Article  Google Scholar 

  179. Kobayashi, S.: Thermoviscoplastic Analysis of Metalforming Problems by the Finite Element Method. In: Pittman, J. F. T., et al.: Numerical Analysis of Forming Processes. John Wiley amp; Sons Ltd. (1981) 45–69.

    Google Scholar 

  180. Wu, W.T.; Oh, S.I.; Altan, T.: Investigation of Defect Formation in Rib-Web Type Forging by ALPID. Proc. NARMC (1984) 12, 159–165.

    Google Scholar 

  181. Herbertz, R.: Einsatz Finiter-Elemente-Methoden für die Simulation von Umformprozessen. In: Tagungsband 15th International FEM-Congress, Baden-Baden, 17-18. Nov. 1986/IKOSS GmbH, Stuttgart.

    Google Scholar 

  182. Altan, T.; Knörr, M.: Anwendung des FEM-Programms DEFORM in der Massivumformung. In: Tagungsband Seminar: Neuere Entwicklungen in der Massivumformung. DGM Verlag (1991) 202–226.

    Google Scholar 

  183. Klie, W.; Lung, M.; Mahrenholtz, O.: Axisymmetric Plastic Deformation Using Finite Element Method. Mech. Res. Comm. (1974) 1, 315–320.

    Article  Google Scholar 

  184. Duggirala, R.; Badawy, A.: Application of the Finite Element Method to Preform Design in Forgings. In: Conference Proceedings: Near Net Shape Manufacturing, Columbus, Ohio 1988. ASM (1988) 159–168.

    Google Scholar 

  185. Amici, E., et al.: Application of the Finite Element Method to the Simulation of Rolling Process of Flat and Long Products. Proc 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 1989), Fort Collins/Colorado, 203–302.

    Google Scholar 

  186. Argyris, J. H., et al.: Numerical Simulation of Forward Extrusion by the Finite Element Method. In:Proc 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 1989), Fort Collins/Colorado, 529–534.

    Google Scholar 

  187. Habraken, A.; Radu, J.: Simulation of Forging Applications with the Finite Element Method. In: Proc 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 1989), Fort Collins/Colorado, 543–548.

    Google Scholar 

  188. Gosh, S.: A New Finite Element Description for Simulation of Metal Forming Processes. In: Proc 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 1989), Fort Collins/Colorado, 159–164.

    Google Scholar 

  189. Wilhelm, M.; Keck, P.: FE-Methoden zur Stoffflußbetrachtung in der Massivumformung. In: Tagungsband Seminar: Neuere Entwicklungen in der Massivumformung, Forschungsges. Umformtechnik. Stuttgart: 1989.

    Google Scholar 

  190. Roll, K.; Neitzert, Th.: On the Application of Different Numerical Methods to Calculate Cold Forming Processes. In: Pittman, J.F.T. (Hrsg.): Proc. Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 91–108.

    Google Scholar 

  191. Oh, S.; Lahoti, G.D.; Altan, T.: Application of FEM to Industrial Metal Forming Processes. In: Pittman, J. F. T. (Hrsg.): Proc. Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982).

    Google Scholar 

  192. Boer, R.; Gudmundson, P., Rebelo, N.: Comparison of Elasto-Plastic FEM, Rigid-Plastic FEM and Experiment for Cylinder Upsetting. In: Pittman, J.F.T. (Hrsg.): Proc. Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 217–226.

    Google Scholar 

  193. Rebelo, N.; Rydstad, H.; Schröder, G.: Simulation of Material Flow in Closed-Die Forging by Model Techniques and Rigid-Plastic FEM. In: Pittman, J. F. T. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 237–246.

    Google Scholar 

  194. Kopp, R.; Cho, L.M.; de Souza, M.: Multi-Level Simulation of Metalforming Processes. In. Lange, K. (Hrsg.): Proc. 2nd ICTP (Advanced Technolgy in Plasticity). Berlin Heidelberg New York: Springer (1987) 1229–1234.

    Google Scholar 

  195. Kobayashi, S.: Process Design in Metal Forming by the Finite Element Method. In: Lange, K. (Hrsg.): Proc. 2nd ICTP (Advanced Technology in Plasticity). Berlin Heidelberg New York: Springer (1987) 1213–1220.

    Google Scholar 

  196. Mahrenholtz, O.; Dung, L.: Mathematical Modelling of Metal Forming Processes by the Numerical Methods. In: Lange, K. (Hrsg.): Proc. 2nd ICTP (Advanced Technology in Plasticity). Berlin Heidelberg New York: Springer (1987) 3–10.

    Google Scholar 

  197. Kopp, R.; Cho, M. L.: Influence of the Boundary Conditions on Results of the Finite Element Simulation. In: Lange, K. (Hrsg.): Proc. 2nd ICTP (Advanced Technology in Plasticity). Berlin Heidelberg New York: Springer (1987) 43–50.

    Google Scholar 

  198. Gerhardt, J.; Tekkaya, A.E.: Simulation of Drawing Processes by the Finite Element Method. In: Lange, K. (Hrsg.): Proc. 2nd ICTP (Advanced Technology in Plasticity). Berlin, Heidelberg, New York (1987) 843–848.

    Google Scholar 

  199. Westerling, C.: Numerische Simulation instationärer Umformprozesse-Formgenauigkeit des Werkstückes und thermomechanische Werkzeugbeanspruchung. Fortschrittsbericht VDI, Reihe 2 (1986) 118.

    Google Scholar 

  200. Westerling, C.; Dung, N. L.; Mahrenholtz, O.: A Coupled Analysis of Plastic Deformation and Heat Transfer. In: Proc. Int. MTDR Conference, Birmingham, 1985.

    Google Scholar 

  201. Dung, N.L.: The Use of Personal Computer for FE Simulation of Forging Processes. Proc. 11th CANCAM, Edmonton, Canada (1987) D40–D41.

    Google Scholar 

  202. Mahrenholtz, O.; Dung, N.L.: Numerische Lösungen und Finite-Elemente-Methode für Ziehverfahren. Tagungsheft vom DGM-Symposium„Ziehen von Drähten, Stangen und Rohren“, Bad Nauheim (1987) 47–60.

    Google Scholar 

  203. Meidert, M.; Knörr, M.; Altan, T.: Investigation of Numerical and Physical Modeling of Bevel Gear Forming. ERC/NSM Report (1991) B–91–13.

    Google Scholar 

  204. Argyris, J.H.; Doltsinis, J. St.; Fischer, H.; Wüstenberg, H.: Ta panta rhei (äAlles fließt“). Comp. Meth. Appl. Mech. Eng. (1985) 51, 289–362.

    Article  MATH  Google Scholar 

  205. Webster, W.; Davis, R.: Finite Element Analysis of Round to Square Extrusion Processes. Proc. VIth NARMC (1978) 166–170.

    Google Scholar 

  206. Mori, K.; Osakada, K.: Simulation of Three Dimensional Rolling by the Rigid-Plastic Finite Element Method. In: Pittman, J. F. T. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 747–756.

    Google Scholar 

  207. Li, G.-J.; Kobayashi, S.: Spread Analysis in Rolling by the Rigid-Plastic Finite Element Method. In: Pittman, J. F. T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 717–756.

    Google Scholar 

  208. Mori, K.; Osakada, K.; Nakadoi, K.; Fukuda, M.: Simulation of Three-Dimensional Deformation in Metal Forming by the Rigid-Plastic Finite Element Method. In: Advanced Technology of Plasticity 1984, Vol. II, Tokyo (1984) 1009–1014.

    Google Scholar 

  209. Kiefer, B. V.: Three-Dimensional Finite Element Prediction of Material Flow and Strain Distributions in Rolled Rectangular Billets. In: Advanced Technology of Plasticity 1984, Vol. II, Tokyo (1984) 1116–1125.

    Google Scholar 

  210. Sturgess, C.E.N.; Hartley, P.; Rowe, G. W.: Finite Element Modelling of Forging. Proc. 7th Intern. Congress Cold Forging, Birmingham (1985) 39–47.

    Google Scholar 

  211. Park, J. J.; Kobayashi, S.: Three-Dimensional Finite Element Analysis of Block Compression. Int. J. Mech. Sci. Vol. 26 (1984) 3, 165–176.

    Article  MATH  Google Scholar 

  212. Sun, J.-X.; Kobayashi, S.: Analysis of Block Compression with Simplified Three-Dimensional Elements. In: Advanced Technology of Plasticity 1984, Vol. II, Tokyo (1984) 1027–1034.

    Google Scholar 

  213. Doltsinis, J.St.; Luginsland, J.; Dohmen, M.; de Souza, M.; Kopp, R.: Coupled Thermal-Mechanical Simulation of Three-Dimensional Metal Forming Processes. In: Tagungsband, 4. Aachener Stahlkolloquium, Aachen 1988, 5.3-1-5.3-14.

    Google Scholar 

  214. de Souza, M.; Hagen, W.; Dahl, W.; Kopp, R.: Simulation des Profilwalzens mit Hilfe von Werkstoffmodellen und der Finite Element Methode. In: Tagungsband, 4. Aachener Stahlkolloquium, Aachen 1988, 2.4-1-2.4-21.

    Google Scholar 

  215. Gerhardt, J.; Lange, K.: Dreidimensionale gekoppelte mechanische und thermische Simulation in der Kalt-und Warmmassivumformung. Steel Research (1989) 10, 451 ff.

    Google Scholar 

  216. Appeltauer, J.; Mahrenholtz, O.: Zur Struktur von dreidimensionalen Verfahren in der Plastomechanik. ZAMM 69 (1989) 4, T237–T239.

    Google Scholar 

  217. Appeltauer, J.; Mahrenholtz, O.: Numerische Simulation bei dreidimensionaler plastischer Umformung. In: Bruhns, O.T.: Große plastische Formänderungen. Bad Honnef: 1988. Mitteilungen aus dem Inst. für Mechanik, Ruhr-Universität, Bochum, Januar 1989, 30–32.

    Google Scholar 

  218. Appeltauer, J.; Dung, N.L.; Mahrenholtz, O.: Some Theoretical and Numerical Aspects of Large Deformations in Three-Dimensional Metal Forming. Proceedings of the 3rd International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM), Fort Collins, Colorado, Juni 1989. Rotterdam, Brokfield: A.A. Balkema (1989) 523–527.

    Google Scholar 

  219. Shiau, Y.: Three dimensional Finite Element Analysis of Open-Die Forging and Rolling Processes. In: Conf.-Proc Near Net Shape Manufacturing, Columbus/Ohio, 1988, 69–1 A.

    Google Scholar 

  220. Pillinger, I.; Hartley, P.; Sturgess, C.E.N.; Rowe, G.W.: Finite Element Modelling of Metal Flow in Three-Dimensional and Temperature-Dependent Forming. In: Proceedings of the NUMIFORM 86 Conference, Göteborg, 25-29. August, 151–155.

    Google Scholar 

  221. Cescutti, J.P.; Soyris, N.; Surdon, G.; Chenot, J.L.: Thermo-Mechanical Finite Element Calculation of Three-Dimensional Hot Forging with Remeshing. In: Lange, K. (Hrsg.) Proc. of the 2nd ICTP (1987). Berlin Heidelberg New York: Springer 1987; 1051–1058.

    Google Scholar 

  222. Sebastian, M. A.; Rodriguez, P.; Sanchez, A. M.: A Method of Discretisation and an Approach to Three-Dimensional Deformation Analysis of Extrusion by the Finite Element Method. In: Proc. 1st Int. Conf. on Numerical Methods in Industrial Forming Processes. Swansea, UK (1982) 227–236.

    Google Scholar 

  223. Pillinger, I.: The Prediction of Metal Flow and Properties in Three-Dimensional Forgings Using the Finite Element Method. Ph.D. thesis, University of Birmingham. Birmingham: 1984.

    Google Scholar 

  224. Liu, C.: Modelling of Strip and Three-Dimensional Rolling Using an Elastic-Plastic Finite Element Method. Ph.D. Thesis, University of Birmingham. Birmingham: 1985.

    Google Scholar 

  225. Bertrand-Corsini, C., et al.: A Three-Dimensional Analysis of Hot Rolling with a Steady State Thermomechanical Approach. Proceedings of the 3rd International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 89), Fort Collins, Colorado, Juni 1989. Rotterdam, Brokfield: A. A. Balkema (1989) 303–308.

    Google Scholar 

  226. Bertrand-Corsini, C., et al.: A 3D Thermomechanical Analysis of Steady Flow in Hot Forming Processes. Application to hot rolling and hot shape rolling, Euromech 233, Sophia Antipolis, France, August 29-31, 1988.

    Google Scholar 

  227. David, C., et al.: A Three-Dimensional Thermomechanical Analysis of Rolling by the Finite Element Method. 4th International Steel Rolling Conference, Deauville, IL, F10-1. Publ. IRSID-ATS 1987.

    Google Scholar 

  228. Mori, K.; Osakada, K.: Finite Element Simulation of Three-Dimensional Deformation in Shape Rolling. Proceedings of the 3rd International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 89), Fort Collins, Colorado, Juni 1989. Rotterdam, Brokfield: A.A. Balkema (1989) 337–342.

    Google Scholar 

  229. Mori, K.; Nakadoi, K.; Mihara, Y.: Finite Element Simulation of Three-Dimensional Deformation in Rolling of Seamless Pipe. Proc. 3rd Int. Conf. Steel Rolling, Tokyo (1985) 375–382.

    Google Scholar 

  230. Bertrand, C.; David, C.: Stress Calculation in Finite Element Analysis of Three-Dimensional Hot Shape Rolling. Proceedings of the 2nd International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM 86), Göteborg 1989. Rotterdam, Brokfield: A.A. Balkema (1989) 207–212.

    Google Scholar 

  231. Yamada, K.; Ogawa, S.: Three-Dimensional Analysis of Mandrel Rolling Using Rigid Plastic Finite Element Method. Proceedings of the 3rd International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM), Fort Collins, Colorado, Juni 1989. Rotterdam, Brokfield: A. A. Balkema (1989) 375–380.

    Google Scholar 

  232. Wang, N.M.; Budiansky, B.: Analysis of Sheet Metal Stamping by a Finite Element Method. ASME, J. Appl. Mech. 45 (1978) 3, 73–82.

    Article  MATH  Google Scholar 

  233. Arlinghaus, F. J.; Stoughton, T.B.; Frey, W.H.; Murthy, B.K.: Finite Element Modelling of a Stretch-formed Production Panel. In: Wang, N.-M.; Tang, S. C. (Eds.) Computer Modeling of Sheet Metal Forming Processes. AIME Warrendale, Pennsylvania 1985.

    Google Scholar 

  234. Wang, N.-M.: A Rigid-Plastic Rate Sensitive Finite Element Method for Modelling Sheet Metal Forming Processes. In: Pittman, J. F. T. et al. (Ed.): Numerical Method of Forming Processes. Wiley amp; Sons, Chichester 1982, 797–806.

    Google Scholar 

  235. Yang, D. Y.; Kim, Y. J.: A Rigid-Plastic Finite Element Formulation for the Analysis of General Deformation of Planar Anisotropic Sheet Metals and Its Applications. Int. J. Mech. Sci. (1986) 28, 825–840.

    Article  MATH  Google Scholar 

  236. Massoni, E. et al.: A Finite Element Modelling for Deep Drawing of Thin Sheet in Automotive Industry. In: Lange, K. (Ed.) Advanced Technology of Plasticity 1987, Vol. II. Springer: Berlin 1987, 719–725

    Google Scholar 

  237. Keck, P.; Wilhelm, M.; Roll, K.: Einsatz von FE-Verfahren zur Simulation von Blechumformvorgängen. XVII. Int. Finite-Element-Kongress, Baden-Baden, November 1988, 101–122.

    Google Scholar 

  238. Kim, Y.; Yang, D.Y.: A Rigid-Plastic Finite Element Formulation Considering the Effect of Geometric Change and its Application to Hydrostatic Bulging. Int. J. Mech. Sci. (1985) 27, 453–463.

    Article  MATH  Google Scholar 

  239. Iseki, H.; Jimma, T.; Murota, T.: Finite Element Method of the Analysis of the Hydrostatic Bulging of a Sheet Metal (Part II). Bull, JSME 20 (1987).

    Google Scholar 

  240. Krawietz, A.: Ein neuartiger FEM-Zugang zur Tiefziehsimulation. In: Numerische Methoden der Plastomechanik. Besdo, B. (Hrsg.) Institut für Mechanik, Universität Hannover, Juli 1989, 126–141.

    Google Scholar 

  241. Sowerby, R.; Tomita, Y; Duncan, J.L.: In Plane Torsion Testing of Sheet Metal. J. Mech. Eng. Sci. 19(1977) 5, 213–220.

    Article  Google Scholar 

  242. Wang, N.-M.; Wenner, W.L.: Elastic-Viscoplastic Analysis of Simple Stretch Forming Problems. In: Koistinen D. P.; Wang, N.-M. (Eds.): Mechanics of Sheet Metal Forming New York London: Plenum Press 1978, 367–402.

    Chapter  Google Scholar 

  243. Rebelo, N.; Kobayashi, S.: Axisymmetric Punch Stretching of Strain-Rate Sensitivity Sheet Metals. Proc. NAMRC VIII, Rolla, Missouri, 10.-20. Mai 1980, 235–238.

    Google Scholar 

  244. Nakamachi, E.; Sowerby, R.: A Numerical Analysis of the Punch Stretching of Peripherally Clamped Circular Discs. In: Pitman J.F.T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 641–651.

    Google Scholar 

  245. Wennerstöm, H.; Samuelson, A.; Mattiasson, K.: Finite Element Method for Sheet Metal Stretching. In: Pittman, J. F. T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 51–65.

    Google Scholar 

  246. Toh, C. H.; Kobayashi, S.: Finite Element Process Modelling of Sheet Metal Forming of General Shapes. In: Grundlagen der Umformtechnik I. Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Nr. 74. Berlin: Springer 183, 39–56.

    Google Scholar 

  247. Mattiasson, K.; Samuelson, A.: Total and Updated Lagrangian Forms of the Co-rotational Finite Element Formulation in Geometrically and Materially Nonlinear Analysis. In: Taylor, C., et al. (Hrsg.): Numerical Methods for Non-Linear Problems, Vol. 2. Swansea: Pineridge Press (1984) 134–151.

    Google Scholar 

  248. Mattiasson, K.: On the Co-Rotational Finite Element Formulation for Large Deformation Problems. Dept. of Structural Mechanics, Chalmers University of Technology, Publ. No. 83: 1, 1983.

    Google Scholar 

  249. Wang, N.-M.: A Rigid-Plastic Rate-sensitive Finite Element Method for Modelling Sheet Metal Forming Processes (Pittman, J.F.T., et al. (Hrsg.)) Wiley amp; Sons (1984) 117–164.

    Google Scholar 

  250. Iseki, A.; Murota, T.: Analysis of Deep Drawing of Non-Axisymmetric Cup by the Finite Element Method. Proc. 1st Int. Conf. on Technology of Plasticity (1. ICTP). Tokyo: 1984.

    Google Scholar 

  251. Toh, C.H.; Kobayashi, S.: Deformation Analysis and Blank Design in Square Cup Drawing. Int. J. Mach. Tool Des. Res. 25 (1985) 1, 15–32.

    Article  Google Scholar 

  252. Stoughton, T. B.: Finite Element Modelling of 1008 Ak Sheet Steel Stretched Over a Rectangular Punch With Bending Effects. The 12th Annual Automotive Materials Symposium, Ann Arbor, Michigan, April 28-30, 1985.

    Google Scholar 

  253. Arlinghaus, F. J., et al.: Finite Element Modelling of a Stretch-Formed Production Panel. The 12th Annual Automotive Materials Symposium, Ann Arbor, Michigan, April 28-30, 1985.

    Google Scholar 

  254. Wang, N.-M.; Tang, S.C.: Applications of the Finite Element Method to Sheet Metal Flange Operations. 1st International Workshop on Simulation of Metal Forming Processes by the Finite-Element-Method (SIMOP-I), Institut für Umformtechnik, Universität Stuttgart 1985, 279–306.

    Google Scholar 

  255. Mattiasson, K.: Numerical Simulation of Stretch Forming Processes. 1st International Workshop on Simulation of Metal Forming Processes by the Finite-Element-Method (SIMOP-I), Institut für Umformtechnik, Universität Stuttgart 1985, 170–213.

    Google Scholar 

  256. Wang, N.-M.; Tang, S. C.: Analysis of Bending Effects in Sheet Forming Operations. Proc. 2nd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 86), Göteburg, Schweden, 1986, 71–76.

    Google Scholar 

  257. Nakamachi, E.: Finite Element Modelling of the Punch Process Forming of Thin Elastic-Plastic Plates. Proc. 2nd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 86), Göteburg, Schweden, 1986, 333–338.

    Google Scholar 

  258. Wagoner, R. H.; Nakamachi, E.; Germain, Y.: Analysis of Sheet Forming Operations Using the Finite Element Method. Proc 15th IDDRG Biennal Congress, Dearborn, Michigan, May 1988.

    Google Scholar 

  259. Keck, P.; Wilhelm, M.; Lange, K.; Herrmann, M.: Comparison of Different Finite Element Models for the Simulation of Sheet Metal Forming. In: Thompson, E. G., et al. (Hrsg.): Proc. 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 89), Fort Collins. Rotterdam: Balkema (1989) 481–488.

    Google Scholar 

  260. Tang, S.C.: Verification and Application of a Binder Wrap Analysis. The 12th Annual Automotive Materials Symposium, Ann Arbor, Michigan, April 28-30, 1985.

    Google Scholar 

  261. Saleeb, A. F.; Chang, T.Y.; Wang, J.: A Simple Shell Model for the Analysis of Sheet Metal Forming Problems. Proc 2nd World Congress on Computational Mechanics, Extended Abstracts of Poster, Stuttgart, Germany, August 1990, 787–791.

    Google Scholar 

  262. Zienkiewicz, O. C.; Onate, E.; Heinrich, J. C.: Plastic Flow in Metal Forming. I. Coupled Thermal, II. Thin Sheet Forming. In: Armen, H.; Jones R. F. (Hrsg.): Applications of Numerical Methods to Forming Processes. New York: ASME, AMD-Vol (1978) 28, S. 107–120.

    Google Scholar 

  263. Tatenami, T.; Nakamura, Y.; Saito, K.: An Analysis of Deep Drawing Process Combined with Bending. In: Pittman, J.F.T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 687–696.

    Google Scholar 

  264. Tatenami, T.; Nakamura, Y.; Saito, K.: Numerical Solution of Deep-Drawing Through Tractrix Die. In: Pittman, J.F.T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 677–686.

    Google Scholar 

  265. Honnor, M. E.; Wood, R. D.: A Finite Element Analysis of Deep-Drawing: the Boundary Condition Problem. In: Pittman, J.F.T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 807–808.

    Google Scholar 

  266. Honnor, M.E.; Wood, R.D.: Finite Element Analysis of Axisymmetric Deep-Drawing Using a Simple Two Noded Mindlin Shell Element. In: Taylor, C., et al. (Hrsg.): Numerical Methods for Non-Linear Problems, Vol. 2. Swansea: Pineridge Press (1984) 440–449.

    Google Scholar 

  267. Tang, S.C.; Chu, E.; Samanta, S.K.: Finite Element Prediction of the Deformed Shape of an Automotive Body Panel During Preformed Stage. In: Pitman, J. F. T. et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 620–640.

    Google Scholar 

  268. Baynham, J.M. W.; Zienkiewicz, O.C.: Developments in the Finite Element Analysis of Thin Sheet Drawing and Direct Redrawing Processes Using the Rigid Plastic Approach. In: Pittman, J. F. T., et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 697–707.

    Google Scholar 

  269. Onate, E.; Zienkiewicz, O. C.: A Viscous Shell Formulation for the Analysis of the Thin Sheet Metal Forming. Int. J. Mech. Sci. 25 (1983) 5, 305–335.

    Article  Google Scholar 

  270. Onate, E.; Lama, P.: Possibilities of the Finite Element Viscous Shell Approach for the Analysis of sheet Metal Forming Problems. 1st International Workshop on Simulation of Metal Forming Processes by the Finite-Element-Method (SIMOP-I), Institut für Umformtechnik, Universität Stuttgart, 3. Juni 1985, 214–253.

    Google Scholar 

  271. Doltsinis, J. St.; Luginsland, J.; Nölting, S.: Some Developments in the Numerical Simulation of Metal Forming Processes. In: Owen, D. R. J.; Hinton; E., Onate, E.: Computational Plasticity. Swansea: Pineridge Press (1987), 875–900.

    Google Scholar 

  272. Tang, S.C.; Gress, J.; Ling, P.: Sheet Metal Forming of Automobile Body Panels. Proc. 15th Biennial Congress, Dearborn, Michigan, May 1988.

    Google Scholar 

  273. Onate, E.; Saracibar, C.A.: Some Topics in the Analysis of Sheet Metal Forming Problems Using Viscous Shell Elements. In: Proc 2nd World Congress on Computational Mechanics, Stuttgart, Germany, August 1990, 822–825.

    Google Scholar 

  274. Gelin, J. C; Daniel, J. L.: A Finite Element Simulation of Sheet Metal Forming Processes Using a General Non-Flat Shell Element. In: Thompson, E.G., et al. (Hrsg.): Proc. 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 89), Fort Collins. Rotterdam: Balkema (1989)425–430.

    Google Scholar 

  275. Tang, S.C.; Chappuis, L.B.: Analysis of Sheet Metal Forming Processes by a General Thin Shell Element. In: Thompson, E.G., et al. (Hrsg.): Proc. 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 89), Fort Collins. Rotterdam: Balkema (1989) 507–514.

    Google Scholar 

  276. Reissner, J.; Hora, P.: FE Simulation of the Failure of Ductile Sheet Materials Taking into Account the Real Inhomogeneities of the Material. In: Thompson et al. (Hrsg.): Proc. 3rd Int. Conf. Num. Meth. Ind. Forming Processes (NUMIFORM 89), Fort Collins. Rotterdam: Balkema (1989) 465–470.

    Google Scholar 

  277. Boisse, P.; Daniel, J.; Gelin, J.: Sheet Metal Forming Simulation Using Three and Four Node Shell Elements. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI Berichte 894, VDI-Verlag, Düsseldorf (1991) 343–356.

    Google Scholar 

  278. Nakamachi, E.; Aoh, H.: 3-D Sheet Metal Forming Simulation of Automobile Panel by the Thin Shell Finite Element Method. In:FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI Berichte 894, VDI-Verlag, Düsseldorf (1991) 357–380.

    Google Scholar 

  279. Peric, D.; Owen, D.; Hannor, M.: Simulation of Thin Sheet Metal Forming Processes Employing a Thin Shell Element. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI Berichte 894, VDI-Verlag, Düsseldorf (1991) 569–586.

    Google Scholar 

  280. Ma, C.; Besdo, D.: Ein elastisch-plastisches Schalenelement für die numerische Simulation von Blechumformung. ZAMM 71 (1991) 6, T 591–T 594.

    Google Scholar 

  281. Ma, C.: Ein elastisch-plastisches Schalenmodell zur Simulation von Blechumformvorgängen. Dissertation Universität Hannover, VDI-Fortschr.-Bericht, Reihe 2, 1991.

    Google Scholar 

  282. Wifi, A.S.: An Incremental Complete Solution of Stretch-Forming and Deep-Drawing of a Circular Blank Using a Hemispherical Puch. Int. J. Mech. Sci. (1976) 18, 23–31.

    Article  MATH  Google Scholar 

  283. Wifi, A. S.: Finite Element Correction Matrices in Metal Forming Analysis (with Application to Hydrostatic Bulging of a Circular Sheet). Int. J. Mech. Sci. 24 (1982) 7, 393–406.

    Article  Google Scholar 

  284. Kobayashi, S.; Kim, J. H.: Deformation Analysis of Axisymmetric Sheet Metal Forming Processes by the Rigid-Plastic Finite Element Method. In: Koistinen, D.P. Wang, N.-M. (Hrsg.): Mechanics of Sheet Metal Forming. New York London: Plenum Press 1978, 341–365.

    Chapter  Google Scholar 

  285. Bellingardi, G.; Calderale, P.M.; Cozzari, G.; Zimgariello, F.: Experience in Plasticity. (Owen, D.R.J.; Hinton, E.; Onate, E. (Eds.). Swansea: Pineridge Press (1987), 941–954.

    Google Scholar 

  286. Amodio, D.; Pietrosanti, C.; Santucci, G.; Segala, A.: A First Investigation on Sheet Metal Forming by the Finite Element Method. Proc. 15th IDDRG Biennial Congress, Dearborn, Michigan, May 1988.

    Google Scholar 

  287. Stalmann, A. P.: Numerische Simulation des Tiefziehvorgangs. VDI-Berichte, Nr. 95, Reihe 2. Düsseldorf: VDI-Verlag 1985.

    Google Scholar 

  288. Flanagan, D.P.; Taylor, L.M.: An Accurate Numerical Algorithm For Stress Integration With Finite Rotations. Comp. Meth. Appl. Mech. Eng. (1987) 62, 305–320.

    Article  MATH  Google Scholar 

  289. Herrmann, M.: Beitrag zur Berechnung von Vorgängen der Blechumformung mit der Methode der Finiten Elemente. Prozeßsimulation in der Umformtechnik, Bd. 1 Berlin Heidelberg New York: Springer 1991.

    Google Scholar 

  290. Takizawa, H.; Makinouchi, A.; Santos, A.; Mori, N.: Simulation of 3-D sheet bending Process. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI Berichte 894, VDI-Verlag, Düsseldorf, 1991, S. 167–184.

    Google Scholar 

  291. Gotoh, M.; Ishise, F.: A Finite Element Analysis of Rigid-Plastic Deformation of the Flange in a Deep-Drawing Process Based on a Fourth-Degree Yield Function. Int. J. Mech. Sci. (1978) 20, 423–435.

    Article  MATH  Google Scholar 

  292. Yamada, Y.; Wifi, A.S.; Hirakawa, T.: Analysis of Large Deformation and Stress in Metal Forming Processes by the Finite Element Method. In: Lippmann, H. (Hrsg.): Metal Forming Plasticity. Berlin: Springer 1979.

    Google Scholar 

  293. Key, S. W.; Krieg, R. D.; Bathe, K. J.: On the Application of the Finite Element Method to Metal Forming Processes. Comp. Meth. Appl. Mech. Eng. 17/18 (1979) 597–608.

    Article  Google Scholar 

  294. Andersen, B.S.: A Numerical Study of the Deep-Drawing Process. In: Pittman, J.F.T. et al. (Hrsg.): Numerical Methods in Industrial Forming Processes. Swansea: Pineridge Press (1982) 709–721.

    Google Scholar 

  295. Chandra, A.: A Generalized Finite Element Analysis of Sheet Metal Forming with an Elastic-Viscoplastic Material Model. General Motors Research Labs., Research Publication GMR-4642, 1984.

    Google Scholar 

  296. Rebelo, N.; Wertheimer, T.B.: Finite Element Simulation of Superplastic Forming. Proc. MARC-Users Conf., Monterey, California, April 1988.

    Google Scholar 

  297. Siegert, K., et al.: Zieheinrichtungen einfachwirkender Pressen für die Blechumformung. (Siegert, K. (Hrsg.)). Düsseldorf: DGM Informationsgesellschaft Verlag 1991.

    Google Scholar 

  298. Krawietz, A.: Eine Stoffgleichungsstruktur für Tiefziehbleche. Projektbericht im Auftrag der INPRO, Berlin (1988).

    Google Scholar 

  299. Mathiak, F.; Fuchs, F.: Implementation of a Constitutive Equation for Elastic-plastic Material Behavior with Work-Hardening and a Bauschinger Effect into Finite Element Codes. Complas II, Barcelona 1989.

    Google Scholar 

  300. Anderheggen, E.: On the Design of a New Program to Simulate Thin Sheet Metal Forming Processes. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI-Berichte 894, S. 231–246. Düsseldorf: VDI-Verlag 1991.

    Google Scholar 

  301. Nagtegaal, J.C.; Taylor, L.M.: Comparison of Implicit and Explicit Finite Element Methods for Analysis of Sheet Forming Problems. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI-Berichte 894, S. 705–725. Düsseldorf: VDI-Verlag 1991.

    Google Scholar 

  302. Honecker, A.; Mattiasson, K.: Finite Element Procedures for 3D Sheet Forming Simulation, Proc. NUMIFORM 89 (Thompson, Wood, Zienkiewicz, Samuelsson (Hrsg.)). Fort Collins, Balkema 1989.

    Google Scholar 

  303. Gröber, M.; Gruber, K.: Numerical Simulation of Sheet Metal Forming of Large Car Body Components. In: FE-Simulation of 3-D Sheet Metal Forming Processes in Automotive Industry. VDI-Berichte 894, S. 587–600. Düsseldorf: VDI-Verlag.

    Google Scholar 

  304. Di Pasquale, E.; El-Khaldi, F.; Haug, E.; Aita, S.: Development and Validation of a General Industrial Stamping Simulation Code based on Mindlin Shell Formulation. 16th Congress IDDRG “Sheet Metals in Forming Processes“, Borlänge, Schweden, Juni 11-13, 1990.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, K., Roll, K., Tekkaya, A.E., Wanheim, T. (1993). Prozeßsimulation und- optimierung. In: Lange, K. (eds) Umformtechnik Handbuch für Industrie und Wissenschaft. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58047-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58047-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63451-2

  • Online ISBN: 978-3-642-58047-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics