Skip to main content

How Many Species Are Required for a Functional Ecosystem?

  • Chapter
Biodiversity and Ecosystem Function

Abstract

One of the key elements in defining an ecosystem is the spatial extent. The view of an ecosystem taken here is a group of species, both visible above ground and invisible below, which interact vertically and horizontally so that the ecosystem develops endogenous properties. The spatial extent of the ecosystem is that which allows the majority of the ecosystem to experience its endogenous properties. In addition, it is considered to follow that only one ecosystem can exist over one area of land. A consequence of this view is that small scale notions of ecosystems may not conform with this definition. For example, it is often quoted that a small decaying tree trunk is an ecosystem, but the presence of the tree trunk on the ground (following disturbance), the diversity of decomposers on the trunk and the microclimate in which the trunk is found may all accrue from the higher level -top-down — property of the larger scale and entire ecosystem. Therefore, the tree trunk in this example is not a complete ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber JD, Melillo JM (1991) Terrestrial ecosystems. Saunders College, Philadelphia

    Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. Chicago University Press, Chicago

    Google Scholar 

  • Auer C (1977) Dynamik von Lärchenwicklerpopulationen längs des Alpenbogens. Mitt Eidg Anst Forstl Versuchswes 53: 71–105

    Google Scholar 

  • Baltensweiler W, Fischlin A (1987) On methods of analyzing ecosystems: lessons from the analysis of forest-insect systems. In: Schulze ED, Zwölfer H (eds) Potentials and limitations of ecosystem analysis. (Ecological studies 61) Springer, Berlin Heidelberg New York, pp 401–415

    Chapter  Google Scholar 

  • Case TJ (1990) Invasion resistance arises in strongly interacting species-rich model competition communities. Proc Natl Acad Sci USA 87: 9610–9614

    Article  PubMed  CAS  Google Scholar 

  • Cousins SH (1990) Countable ecosystems deriving from a new food web entity. Oikos 57: 270–275

    Article  Google Scholar 

  • Cousins SH (1991) Species diversity measurement: choosing the right index. TREE 6: 190–192

    PubMed  Google Scholar 

  • Davis RC (1981) Structure and function of two Antarctic terrestrial moss communities. Ecol Monogr 51: 125–143

    Article  Google Scholar 

  • Ellenberg H (1954) Öber einige Fortschritte der kausalen Vegetationskunde. Vegetatio 5/6: 199–211

    Article  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by plants and animals. Chapman and Hall, London

    Google Scholar 

  • Emanuel WR, Shugart HH, West DC (1978) Spectral analysis and forest dynamics: long-term effects of environmental perturbations. In: Shugart HH (ed) Time series and ecological processes. Society of Industrial and Applied Mathematics, Philadelphia, pp 195–210

    Google Scholar 

  • Fischlin A, Baltensweiler W (1979) Systems analysis of the larch bud moth system. Part I: the larch-larch bud moth relationship. Mitt Schweiz Entomol Ges 52: 273–289

    Google Scholar 

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Friedmann EI, Kibler AP (1980) Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microb Ecol 6: 95–108

    Article  CAS  Google Scholar 

  • Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58: 251–259

    PubMed  CAS  Google Scholar 

  • Good R (1974) The geography of the flowering plants, 4th edn. Longman, London

    Google Scholar 

  • Hanson H, Borlaug NE, Anderson RG (1982) Wheat in the Third World. Westview, Boulder

    Google Scholar 

  • Johnston CG, Vestal JR (1986) Does iron inhibit cryptoendolithic microbial communities? Antarct J USA 21: 225–226

    Google Scholar 

  • Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. In: Llano GA (ed) Antarctic terrestrial biology. American Geophysical Union, Washington DC, pp 83–95

    Chapter  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Margalef R (1968) Perspectives in ecological theory. Chicago University Press, Chicago

    Google Scholar 

  • May RM (1973) Stability and complexity in model ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Mushinsky HR, Gibson DJ (1991) The influence of fire periodicity on habitat structure. In: Bell SS, McCoy ED, Mushinsky HR (eds) Habitat structure: the physical arrangement of objects in space. Chapman and Hall, London, pp 237–259

    Google Scholar 

  • Palmer RJ, Friedmann EI (1988) Incorporation of inorganic carbon by Antarctic cryptoendolithic fungi. Polarforschung 58: 189–191

    PubMed  Google Scholar 

  • Palmer RJ, Friedmann EI (1990) Water relations and photosynthesis in the cryptoendolithic habitat of hot and cold deserts. Microb Ecol 19: 111–118

    Article  PubMed  Google Scholar 

  • Richards BN (1987) The microbiology of terrestrial ecosystems. Longman, London

    Google Scholar 

  • Rowe JS (1961) The level-of-integration concept in ecology. Ecology 42: 420–427

    Article  Google Scholar 

  • Schulze ED, Zwölfer H (eds) (1987) Potential and limitations of ecosystem analysis. (Ecological studies 61) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Shugart HH, West DC (1977) Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. J Environ Manage 5: 161–179

    Google Scholar 

  • Smith CW (1985) Impact of alien plants on Hawaii’s native biota. In: Stone CP, Scott JM (eds) Hawaii’s terrestrial ecosystems: preservation and management. University of Hawaii, Honolulu, pp 180–250

    Google Scholar 

  • Smith RIL (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. Sci Rep Br Antarct Surv 68: 124

    Google Scholar 

  • Swank WT, Waide JB, Crossley DA, Todd RL (1981) Insect defoliation enhances nitrate export from forested ecosystems. Oecologia 51: 297–299

    Article  Google Scholar 

  • Tilbrook PJ (1973) The Signy Island terrestrial reference sites. I. An introduction. Bull Br Antarct Surv 33/34: 65–67

    Google Scholar 

  • Van Voris P, O’Neill RV, Emanuel WR, Shugart HH (1980) Functional complexity and ecosystem stability. Ecology 61: 1352–1360

    Article  Google Scholar 

  • Vestal JR (1988) Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. Appl Env Microbiol 54: 960–965

    CAS  Google Scholar 

  • Vitousek PM (1990) Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7–13

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whiteaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238: 802–804

    Article  PubMed  CAS  Google Scholar 

  • Wade D, Ewel J, Hofstetter R (1980) Fire in south Florida ecosystems. US Department of Agriculture, Forest Service General Technical Report SE-17, Asheville

    Google Scholar 

  • Woods FW, Shanks RE (1959) Natural replacement of chestnut by other species in the Great Smoky Mountains National Park. Ecology 40: 349–361

    Article  Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge

    Google Scholar 

  • Woodward FI, Rochefort L (1991) Sensitivity analysis of vegetation diversity to environmental change. Global Ecol Biogeogr Lett 1: 7–23

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woodward, F.I. (1994). How Many Species Are Required for a Functional Ecosystem?. In: Schulze, ED., Mooney, H.A. (eds) Biodiversity and Ecosystem Function. Praktische Zahnmedizin Odonto-Stomatologie Pratique Practical Dental Medicine, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58001-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58001-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58103-1

  • Online ISBN: 978-3-642-58001-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics