Skip to main content

Complete Convergence

  • Conference paper
Asymptotic Statistics

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Abstract

The concept complete convergence was introduced in 1947 by Hsu and Robbins, who proved that the sequence of arithmetic means of i.i.d. random variables converges completely to the expected value of the variables provided their variance is finite. In this paper we summarize a number of extensions and generalizations of that result.

AMS 1980 subject classifications

Primary: 60F15, 60G50 Secondary: 60G40

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, S. And Kurtz, T.G. (1980). necessary And Sufficient Conditions For Complete Convergence In The Law Of Large Numbers. ann. Probab. 8 176–182.

    Article  MathSciNet  MATH  Google Scholar 

  2. Athreya, K.B. And Kaplan, N. (1978). additive Property And Its Applications In Branching Processes. In: advances In Probability And Related Topics (a. Joffe And P. Ney Eds.) marcel Dekker, New York

    Google Scholar 

  3. Baum, L.E. And Katz, M. (1965). convergence Rates In The Law Of Large Numbers. trans. Amer. Math. Soc. 120 108–123.

    Article  MathSciNet  MATH  Google Scholar 

  4. Davis, J.A. (1968). convergence Rates For The Law Of The Iterated Logaritm. ann. Math. Statist. 39 1479–1485.

    MathSciNet  MATH  Google Scholar 

  5. Deniel, Y. And Derriennic, Y. (1988). sur La Convergence Presque Sure, Au Sens De CesàRo D’Ordre α, 0 < α < 1, De Variables AléAtoires IndéPendantes Et Identiquement DistribuéEs. probab. Th. Rel. Fields 79 629–636.

    Article  MathSciNet  MATH  Google Scholar 

  6. ErdőS, P. (1949). on A Theorem Of Hsu And Robbins. ann. Math. Statist. 20 286–291.

    Article  Google Scholar 

  7. Erdos, P. (1950). remark On My Paper “On A Theorem Of Hsu And Robbins”. ann. Math. Statist. 21 138.

    Article  Google Scholar 

  8. Fazekas, I. (1992). convergence Rates In The Law Of Large Numbers For Arrays. publ. Math. Debrecen 41 53–73.

    MathSciNet  MATH  Google Scholar 

  9. Gut, A. (1978). marcinkiewicz Laws And Convergence Rates In The Law Of Large Numbers For Random Variables With Multidimensional Indices. ann. Probab. 6 469–482.

    Article  MathSciNet  MATH  Google Scholar 

  10. Gut, A. (1980). convergence Rates For Probabilities Of Moderate Deviations For Sums Of Random Variables With Multidimensional Indices. ann. Probab. 8 298–313.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gut, A. (1983). complete Convergence And Convergence Rates For Randomly Indexed Partial Sums With An Application To Some First Passage Times. ada Math. Acad. Sci. Hungar. 42 225–232; Ntcorrection, Ibid. 45 (1985) 235-236.

    Article  MathSciNet  MATH  Google Scholar 

  12. Gut, A. (1985). on Complete Convergence In The Law Of Large Numbers For Subsequences. ann. Probab. 13 1286–1291.

    Article  MathSciNet  MATH  Google Scholar 

  13. Gut, A. (1986). the Law Of The Iterated Logarithm For Subsequences. probab. Math. Statist. vii 27–58.

    MathSciNet  Google Scholar 

  14. Gut, A. (1992). complete Convergence For Arrays. period. Math. Hungar. 25 51–75.

    Article  MathSciNet  MATH  Google Scholar 

  15. Gut, A. (1993). complete Convergence And Ces Summation For I.I.D. Random Variables. probab. Th. Rel. Fields 97 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  16. hardy, G.H. (1949). Divergent Series. Oxford University Press.

    Google Scholar 

  17. Hoffmann-JøRgensen, J. (1974). sums Of Independent Banach Space Valued Random Variables. studia Math. lii 159–186.

    Google Scholar 

  18. Hsu, P.L. And Robbins, H. (1974). complete Convergence And The Law Of Large Numbers. proc. Nat. Acad. Sci. Usa 33 25–31.

    Article  MathSciNet  Google Scholar 

  19. Hu, T.-C, Moricz, F. And Taylor, R.L. (1989). strong Laws Of Large Numbers For Arrays Of Rowwise Independent Random Variables. acta Math. Acad. Sei. Hungar. 54 153–162.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jain, N.C. (1975). tail Probabilities For Sums Of Independent Banach Space Valued Random Variables. Z. Wahrscheinlichkeitstheorie Verw. gebiete 33 155–166.

    Article  Google Scholar 

  21. Katz, M. (1963). the Probability In The Tail Of A Distribution. ann. Math. Statist. 34 312–318.

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuczmaszewska, A. And Szynal, D. (1988). on The Hsu-Robbins Law Of Large Numbers For Subsequences. bull. Acad. Sei. Polon. Ser. Math. 36 69–79.

    MathSciNet  MATH  Google Scholar 

  23. Lagodowski, Z.A. And Rychlik, Z. (1985). complete Convergence And Convergence Rates For Randomly Indexed Sums Of Random Variables With Multidimensional Indices. bull. Acad. Sci. Polon. Ser. Math. 32 219–223.

    MathSciNet  Google Scholar 

  24. Marcinkiewicz, J. And Zygmund, A. (1937). sur Les Fonctions IndéPendantes. fund. Math. 29 60–90.

    Google Scholar 

  25. Marcinkiewicz, J. And Zygmund, A. (1938). quelques ThéOrèMes Sur Les Fonctions IndéPendantes. studia. Math. 7 104–120.

    Google Scholar 

  26. Nerman, O. (1981). on The Convergence Of Supercritical General (C-M-J) Branching Processes. z. Wahrsch. Verw. Gebiete 57 365–395.

    Article  MathSciNet  MATH  Google Scholar 

  27. plachky, D. (1988). Complete Convergence Of The Sample Mean For Exchangeable Random Variables. Proc. 5Th Pannonian Symp. On Math. Stat., (Eds. W. Grossmann, J. Mogyorodi, I. Vincze, W. Wertz) 191-197. Reidel.

    Google Scholar 

  28. Slivka, J. (1969). on The Law Of The Iterated Logarithm. Proc. Nat. Acad. Sci. Usa 63 289-291. [29] Spataru (1990). Strenghtening The Hsu-Robbins-ErdőS Theorem. rev. Roumaine Math. Pures Et Appl. 35 463–465.

    Google Scholar 

  29. Spitzer, F.L. (1956). a Combinatorial Lemma And Its Application. trans. Amer. Math. Soc. 82 323–339.

    Article  MathSciNet  MATH  Google Scholar 

  30. Szynal, D. (1972). on Almost Complete Convergence For The Sum Of A Random Number Of Independent Random Variables. bull. Acad. Sci. Polon. Ser. Math. Astronom. Phys. 20 571–574.

    MathSciNet  MATH  Google Scholar 

  31. Yu, K.F. (1990). complete Convergence Of Weighted Sums Of Martingale Differences. j. Theoret Probab. 3 339–347.

    Article  MathSciNet  MATH  Google Scholar 

  32. zygmund, A. (1968). Trigonometric Series. Cambridge University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gut, A. (1994). Complete Convergence. In: Mandl, P., Hušková, M. (eds) Asymptotic Statistics. Contributions to Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57984-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57984-4_19

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0770-7

  • Online ISBN: 978-3-642-57984-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics