Skip to main content

Lilium testaceum: In Vitro Culture and the Production of Glucomannans and Other Secondary Metabolites

  • Chapter
  • 321 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 26))

Abstract

Lilium testaceum syn. Lilium excelsum, Isabell- = Nankinglilie, a hybrid of L. candidum and L. chalcedonicum was found for the first time in 1836. Till today, this species with yellow-brownish flowers and robust stems and leaves can be found in many gardens in the western part of Europe. The ruggedness of L. testaceum is demonstrated by the fact that this species is the only hybridization which has survived from the 19th century to the present. (Feldmaier and Mc Rae 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Mandour AA, Czygan FC, Haaß D, Franz G (1987) Fructan synthesis in tissue cultures of Symphytum officinale L. Initiation, differentiation and metabolic activity. Planta Med 53:482–487

    CAS  Google Scholar 

  • Bräutigam M, Franz G (1985) Versuche zur Gewebekultur von schleimbildenden pflanzlichen Geweben. Sci Pharm 53:237–246

    Google Scholar 

  • Dalessandro G, Piro G, Northcote DH (1986) Glucomannan-synthase activity in differentiating cells of Pinus sylvestris L. Planta 169:564–574

    Article  CAS  Google Scholar 

  • Dalessandro G, Piro G, Northcote DH (1988) A membrane bound enzyme complex synthesizing glucan and glucomannan in pine tissues. Planta 175:60–70

    Article  CAS  Google Scholar 

  • de Belder AN, Norrman B (1968) The distribution of substituents in partially acetylated dextran. Carbohydr Res 8:1–6

    Article  Google Scholar 

  • Endo T, Goodbody A, Misawa M (1987) Alkaloid production in root and shoot cultures of Catharanthus roseus. Planta Med 53:479–482

    Article  PubMed  CAS  Google Scholar 

  • Feldmaier C, Mc Rae J (eds) (1988) Lilien. Ulmer, Stuttgart

    Google Scholar 

  • Fincher GB, Stone BA (1981) Metabolism of non-cellulosic polysaccharides. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13B. Springer, Berlin HeidelbergNew York

    Google Scholar 

  • Franz G (1973) Biosynthesis of Salep mannan. Phytochemistry 12:2369–2373

    Article  CAS  Google Scholar 

  • Garcia MJ, Charlez M, Fauli C, Del Pozo C, Ghirardi PE (1988) Physiochemical comparison of the dietary fibers glucomannan, galactomannan, carboxymethylcellulose, pectin and wheatbran. Curr Ther Res 43:1010–1013

    CAS  Google Scholar 

  • Heller JS, Villemez CL (1972) Interaction of soluble glucosyl-and mannosyltransferase enzyme activities in the synthesis of a glucomannan, Biochem J 128:243–250

    CAS  Google Scholar 

  • Hinman MB, Villemez CL (1975) Glucomannan biosynthesis catalysed by Pisum sativum enzymes. Plant Physiol 56:608–612

    Article  PubMed  CAS  Google Scholar 

  • Kyoshi E, Masuhara R, Kiriyama S (1981) Effect of Konjac mannan, a water-soluble dietary fiber on plasma glucose and insulin responses in young men undergoing glucose tolerance tests. Nutr Rep Int 23(4): 577–584

    Google Scholar 

  • Marzio L, Bianco RD, Donne MD, Pieramico O, Cuccurullo F (1989) Mouth-to-cecum transit time in patients affected by chronic constipation: effect of glucomannan. Am J Gastroenterol 84:888–891

    PubMed  CAS  Google Scholar 

  • Meadows TP (1980) Aloe as a humectant in new skin preparations. Cosmetics Toiletries 95:51–56

    CAS  Google Scholar 

  • Meier H, Reid JSG (1982) Plant carbohydrates I. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology, vol 13A. Springer, Berlin Heidelberg New York, p 418

    Google Scholar 

  • Morris DL (1948) Quantitative determination of carbohydrates with Dreywood’s anthrone reagent. Science 107:254–255

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ramsden L, Northcote DH (1987) Glucomannan synthase from suspension cultures of Pinus sylvestris L. Phytochemistry 26(10): 2679–2685

    Article  CAS  Google Scholar 

  • Reffo GC, Ghirardi PE, Forattini C (1988) Glucomannan in hypertensive outpatients: pilot clinical trial. Curr Ther Res 44:22–26

    Google Scholar 

  • Sedmark JJ, Grossberg SE (1977) A rapid, sensitive and versatile assay for protein using Coomassie Brilliant Blue G 250. Anal Biochem 79:544–552

    Article  Google Scholar 

  • Simmonds JA, Cumming BG (1976) Propagation of Lilium hybrids: I. Dependence of bulblet production on time of scale removal and growth substances. Sci Hortic 5:77–83

    Google Scholar 

  • Syono K (1965) Changes in organ forming capacity of carrot root calluses during subcultures. Plant Cell Physiol 6:403–419

    CAS  Google Scholar 

  • Takayama S, Misawa M (1979) Differentiation in Lilium bulbscales grown in vitro. Effects of various cultural conditions. Physiol Plant 46:184–190

    Article  CAS  Google Scholar 

  • Takayama S, Misawa M (1980) Differentiation in Lilium bulbscales grown in vitro. Effects of activated charcoal, physiological age of bulbs and sucrose concentration on differentiation and scale leaf formation in vitro. Physiol Plant 48:121–125

    CAS  Google Scholar 

  • Takayama S, Misawa M (1982) Regulation of organ formation by cytokinin and auxin in Lilium bulbscales grown in vitro. Plant Cell Physiol 23(1): 67–74

    CAS  Google Scholar 

  • Takayama S, Misawa M (1983) A scheme of mass propagation of Lilium in vitro. Sci Hortic 18:353–362

    Article  Google Scholar 

  • Takayama S, Misawa M Takahishe Y, Tsumori H (1982) Cultivation of in vitro propagated Lilium bulbs in soil. J Am Soc Hortic Sci 107(5): 830–834

    Google Scholar 

  • Torossian K, Maclachlan G (1987) Glycosyl transfer by pea membranes from sugar nucleotides to added prenyl phosphates. Biochim Biophys Acta 925:305–313

    Article  PubMed  CAS  Google Scholar 

  • Wagner H, Stuppner H, Schäfer W, Zenk M (1988) Immunologically active polysaccharides of Echinacea purpurea cell cultures. Phytochemistry 27(1): 119–126

    Article  CAS  Google Scholar 

  • Walsh DE, Yaghoubian V, Behforooz A (1984) Effect of glucomannan on obese patients: a clinical study. Int J Obes 8:289–293

    PubMed  CAS  Google Scholar 

  • Wozniewski T (1991) Analytische und biochemische Untersuchungen mit pflanzlichen Glucomannanen. PhD Thesis, University of Regensburg

    Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1989) Physiologically active polysaccharides from Lilium testaceum: isolation and structural investigation. Planta Med 55:638

    Article  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1990) Isolation and structure analysis of a glucomannan from the leaves of Aloe arborescens var. Miller. Carbohydr Res 198:387–391

    Article  CAS  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1991a) In vitro biosynthesis of a reserve glucomannan from Lilium testaceum. Phytochemistry 30(11): 3579–3584

    Article  CAS  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1991b) In vitro propagation of Lilium testaceum and structural investigation of the storage β-1,4-glucomannan. Plant Cell Rep 10:457–460

    Article  CAS  Google Scholar 

  • Wozniewski T, Blaschek W, Franz G (1992) Isolation and characterization of an Endo-β-mannanase of Lilium testaceum bulbs. Phytochemistry 31(10): 3365–3370

    Article  CAS  Google Scholar 

  • Yinzhu Z, Zhiren Z, Chaoying Y, Haiou L, Guoyang H, Lishi Y (1988) Antihypercolesterolemic and antisteatotic effect of konjac-polysaccharide in rats fed high cholesterol diet. J West China Univ Med Sci 19:324–328

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wozniewski, T., Franz, G. (1994). Lilium testaceum: In Vitro Culture and the Production of Glucomannans and Other Secondary Metabolites. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants VI. Biotechnology in Agriculture and Forestry, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57970-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57970-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63420-8

  • Online ISBN: 978-3-642-57970-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics