Skip to main content
Book cover

Maize pp 50–65Cite as

Ultrastructural Studies on Callus Development and Somatic Embryogenesis in Zea mays L

  • Chapter
  • 529 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

Abstract

Plant regeneration from immature embryos may follow different pathways. First, one may distinguish between a direct and an indirect way. The former implies the de novo development of meristems on the immature embryo from which new expiants originate. In the case of indirect regeneration, the development of new plantlets from the expiant is interrupted by an intervening callus phase. A second distinction in the regeneration process is made between organo-genesis, or shoot morphogenesis, and somatic embryogenesis. In the case of organogenesis, shoots are formed upon the expiant (directly) or on callus tissue (indirectly). Similarly, somatic embryos may develop directly or indirectly, depending on the absence or presence of an intervening callus phase. Figure 1 shows the different morphogenetic ways of regeneration as observed in embryo cultures of Zea mays (Green and Phillips 1975; Springer et al. 1979; Lu et al. 1982; Armstrong and Green 1985; Vasil et al. 1985; Fransz and Schel 1987). All studies used immature embryos with a scutellum length of 1.5-2 mm, which proved to be a sufficient specification of the required developmental stage. This chapter comprises a structural analysis of these various processes by light and electron microscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable embryogenic maize callus and the involvement of L-proline. Planta 164: 207–214

    CAS  Google Scholar 

  • Barckhausen R (1978) Ultrastructural changes in wounded plant storage tissue cells. In: Kahl G (ed) Biochemistry of wounded plant tissues. De Gruyter, Berlin, pp 1–42

    Google Scholar 

  • Barnabas B, Fransz PF, Schel JHN (1987) Ultrastructural studies on pollen embryogenesis in maize (Zea mays L). Plant Cell Rep 6: 212–215

    Google Scholar 

  • Botti C., Vasil IK (1983) Plant regeneration by somatic embryogenesis from parts of cultured mature embryos of Pennisetum americanum (L.) K. Schum. Z Pflanzenphysiol 111: 319–325

    Google Scholar 

  • Bregitzer P, Somers DA, Rines HW (1989) Development and characterization of friable, embryogenic oat callus. Crop Sci 29: 798–803

    Google Scholar 

  • Davies E, Larkins BA (1980) Ribosomes. In: Tolbert NE(ed) The biochemistry of plants, vol 1. The plant cell. Academic Press, New York, pp 413–435

    Google Scholar 

  • Everett NP, Wach MJ, Ashworth DJ (1985) Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Sci 41: 133–140

    Article  CAS  Google Scholar 

  • Fransz PF, Schel JHN (1987) An ultrastructural study on early callus development from immature embryos of the maize strains A188 and A632. Acta Bot Neerl 36: 247–260

    Google Scholar 

  • Fransz PF, Schel JHN (1991a) Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Can J Bot 69: 26–33

    Article  Google Scholar 

  • Fransz PF, Schel JHN (1991b) An ultrastructural study on the early development of Zea mays L. somatic embryos. Can J Bot 69: 858–865

    Article  Google Scholar 

  • Fransz PF, Kieft H, Schel JHN (1990) Cell cycle changes during callus initiation from cultured maize embryos. An autoradiographic study. Acta Bot Neerl 36: 65–73

    Google Scholar 

  • Green CE, Phillips RL (1975) Plant regeneration from tissue culture of maize. Crop Sci 15: 417–421

    Article  Google Scholar 

  • Green CE, Armstrong CL, Anderson PC (1983) Somatic cell genetic systems in corn. In: Downey K, Voellmy RW, Ahmad F, Schultz J (eds) Advances in gene technology: molecular genetics of plants and animals. Academic Press, New York, pp: 147–157

    Google Scholar 

  • Halperin W, Jensen WA (1967) Ultrastructural changes during growth and embryogenesis in carrot cell cultures. J Ultrastruct Res 18: 428–443

    Article  PubMed  CAS  Google Scholar 

  • Hilling B, Amelunxen F (1985) On the development of the vacuole. IL Further evidence for endo-plasmic reticulum origin. Eur J Cell Biol 38: 195–200

    Google Scholar 

  • Ho WJ, Vasil IK (1983) Somatic embryogenesis in sugar cane (Saccharum officinarum L.). I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Google Scholar 

  • Israel HW, Steward FC (1966) The fine structure of quiescent and growing carrot cells. Its relation to growth induction. Ann Bot 30: 65–79

    Google Scholar 

  • Jones TJ, Rost TL (1989) The developmental anatomy of somatic embryos from rice (Oryza saliva L.) scutellum cells. Bot Gaz 150: 41–49

    Article  Google Scholar 

  • Kamo, KK, Chang KL, Lynn ME, Hodges TK (1987) Embryogenic callus formation from maize protoplasts. Planta 172: 245–251

    Article  CAS  Google Scholar 

  • Kott LS, Howarth MJ, Peterson RL, Kasha KJ (1985) Light and electron microscopy of callus initiation from haploid barley embryos. Can J Bot 63: 1801–1805

    Google Scholar 

  • Lu C., Vasil IK, Ozias-Akins P (1982) Somatic embryogenesis in Zea mays L. Theor Appl Genet 62: 109–112

    Article  Google Scholar 

  • Lu C., Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor Appl Genet 66: 285–289

    Article  Google Scholar 

  • Maddock SE (1985) Cell culture, somatic embryogenesis and plant regeneration in wheat, barley, oats, rye and Triticale, In: Bright SWJ, Jones MGK (eds) Cereal tissue and cell culture. Nijhoff Junk Dordrecht, pp 131–174

    Google Scholar 

  • McCain JW, Hodges TK (1986) Anatomy of somatic embryos from maize embryo cultures. Bot Gaz 147: 453–460

    Article  Google Scholar 

  • McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149: 16–20

    Article  Google Scholar 

  • McDaniel JK, Conger BV, Graham ET (1982) A histological study of tissue proliferation, embryogenesis and organogenesis from tissue culture of Dactylis glomerata L. Protoplasma 110: 121–128

    Article  Google Scholar 

  • McWilliam AA, Smith SM, Street HE (1974) The origin and development of embryoids in suspension cultures of carrot (Daucus carota). Ann Bot 38: 243–250

    Google Scholar 

  • Ozias-Akins P, Vasil IK. (1982) Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum L. (wheat): Evidence for somatic embryogenesis. Protoplasma 110: 95–105

    Google Scholar 

  • Prioli LM, Söndahl MR (1989) Plant regeneration and recovery of fertile plants from protoplasts of make (Zea mays L.). Biotechnology 7: 589–594

    Article  Google Scholar 

  • Profumo P, Gastaldo P, Rascio N (1987) Ultrastructural study of different types of callus from leaf expiants of Aesculus hippocastanum L. Protoplasma 138: 89–97

    Article  Google Scholar 

  • Rhodes CA, Lowe KS, Ruby KL (1988) Plant regeneration from protoplasts isolated from embryo-genic maize cell cultures. Biotechnology 6: 56–60

    Article  Google Scholar 

  • Schel JHN, Kieft H (1986) An ultrastructural study of embryo and endosperm development during in vitro culture of maize ovaries (Zea mays) Can J Bot 64: 2227–2238

    Google Scholar 

  • Schel JHN, Kieft H, Van Lammeren AAM (1984) Interactions between embryo and endosperm during early developmental stages of maize caryopses (Zea mays) Can J Bot 62: 2842–2853

    Google Scholar 

  • Shillito RD, Carswell GK, Johnson CM, DiMaio JJ, Harms CT (1989) Regeneration of fertile plants of elite inbred maize. Biotehnology 7: 581–587

    Article  Google Scholar 

  • Songstad DD, Armstrong CL, Petersen WL (1991) AgNO3 increases type II callus production from immature embryos of maize inbred B73 and its derivatives. Plant Cell Rep 9: 699–702

    Article  CAS  Google Scholar 

  • Springer WD, Green CE, Kohn KA (1979) A histological examination of tissue culture initiation from immature embryos of maize. Protoplasma 101: 269 281

    Article  Google Scholar 

  • Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138: 173–182

    Article  Google Scholar 

  • Thomas E, Konar RN, Street HE (1972) The fine structure of the embryogenic callus of Ranunculus sceteralus L. J Cell Sci 11: 95–109

    PubMed  CAS  Google Scholar 

  • Trigiano RN, Gray DJ, Conger BV, McDaniel JK (1989) Origin of direct somatic embryos from cultured leaf segments of Dactylus glomerata. Bot Gaz 150: 72–77

    Article  Google Scholar 

  • Vain P, Yean H, Flament P(1989) Enhancement of production and regeneration of embryogenic type II callus in Zea mays L. by AgNO3. Plant Cell Tissue Organ Cult 18: 143–151

    Article  Google Scholar 

  • Van Lammeren AAM, Kieft H, Provoost E, Schel JHN (1987) Immunogold labelling in ultrathin cryosections of cultured carrot cells. Acta Bot Neerl 36: 125–132

    Google Scholar 

  • Vasil V, Vasil IK (1982) The ontogeny of somatic embryos of Penniselum americanum (L.) K. Schum. I. In cultured immature embryos. Bot Gaz 143: 454–165

    Article  Google Scholar 

  • Vasil V, Vasil IK, Lu C (1984) Somatic embryogenesis in long-term callus cultures of Zea mays L. (Gramineae). Am J Bot 71: 158–161

    Article  Google Scholar 

  • Vasil V, Lu C., Vasil IK (1985) Histology of somatic embryogenesis in cultured immature embryos of maize (Zea mays L.). Protoplasma 127: 1–8

    Article  Google Scholar 

  • Wernicke W, Potrykus I, Thomas E (1982) Morphogenesis from cultured leaf tissue of Sorghum bicolor. The morphogenetic pathways. Protoplasma 111: 53–62

    CAS  Google Scholar 

  • Williams EG, Maheswaran G (1986) Somatic embryogenesis: Factors influencing coordinated behaviour of cells as an embryogenic group. Ann Bot 57: 443–462

    Google Scholar 

  • Yeoman MM, Street HE (1977) General cytology of cultured cells. In: Street HE (ed) Plant tissue and cell culture, botanical monographs, vol 11. Blackwell, Oxford, pp 137–176

    Google Scholar 

  • Yeung EC (1980) Embryogeny of Phaseolus: the role of the suspensor. Z. Planzenphysiol 96: 17-2817–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fransz, P.F., Schel, J.H.N. (1994). Ultrastructural Studies on Callus Development and Somatic Embryogenesis in Zea mays L. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics