Skip to main content

Alcohol Dehydrogenases in Maize Cell Cultures

  • Chapter
Maize

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

  • 526 Accesses

Abstract

In maize, the alcohol dehydrogenases (ADH1 and ADH2) represent two of a group of polypeptides that are synthesized in response to anaerobic conditions (Sachs et al. 1980). Maize grown under aerobic conditions shows only low levels of ADH in most organs of the plant, although ADH1 is produced constitutively in embryo, endosperm, and pollen (Freeling and Bennett 1985). When plants are subjected to anaerobic stress, both ADH1 and ADH2 are induced in the roots (Freeling and Schwartz 1973), but not in mature green leaf tissues (Okimoto et al. 1980). There is some synthesis of ADH1 and ADH2 in cultured cells, possibly as a result of relatively hypoxic conditions under which the cultures are maintained. These levels are further increased by anaerobic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong CL, Phillips RL (1988) Genetic and cytogenetic variation in plants regenerated from organogenic and friable, embryogenic tissue cultures of maize. Crop Sci 28: 363–369

    Article  Google Scholar 

  • Benzion G, Phillips RL (1988) Cytogenetic stability of maize tissue cultures: a cell line pedigree analysis. Genome 30: 318–325

    Article  Google Scholar 

  • Birchler JA (1980) The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics 94: 687–700

    PubMed  CAS  Google Scholar 

  • Brettell RIS, Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229: 365–372

    Article  PubMed  CAS  Google Scholar 

  • Brettell RIS, Dennis ES, Scowcroft WR, Peacock WJ (1986) Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet 202: 235–239

    Article  CAS  Google Scholar 

  • Buchman AR, Berg P (1988) Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 8: 4395–4405

    Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1: 1183–1200

    Article  PubMed  CAS  Google Scholar 

  • Chang C., Meyerowitz EM (1986) Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83: 1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Chen C-H, Freeling M, Merckelbach A (1986) Enzymatic and morphological consequences of Ds excisions from maize Adhl. Maydica 31: 93–108

    CAS  Google Scholar 

  • Chourey PS, Zurawski DB (1981) Callus formation from protoplasts of a maize cell culture. Theor Appl Genet 59: 341–344

    Article  Google Scholar 

  • Dennis ES, Brettell RIS (1990) DNA methylation of maize transposable elements is correlated with activity. Philos Trans R Soc Lond B 326: 217–229

    Article  CAS  Google Scholar 

  • Dennis ES, Gerlach WL, Pryor AJ, Bennetzen JL, Inglis A, Llewellyn D, Sachs MM, Ferl RJ, Peacock WJ (1984) Molecular analysis of the alcohol dehydrogenase (Adhl) gene of maize. Nucl Acids Res 12: 3983–4000

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Sachs MM, Geriach WL, Finnegan EJ, Peacock WJ (1985) Molecular analysis of the alcohol dehydrogenase 2 (Adh2) gene of maize. Nucl Acids Res 13: 727–743

    Article  PubMed  CAS  Google Scholar 

  • Dennis ES, Gerlach WL, Peacock WJ, Schwartz D (1986) Excision of the Ds controlling element from the Adhl gene of maize. Maydica 31: 47–57

    CAS  Google Scholar 

  • Dennis ES, Brettell RIS, Peacock WJ (1987a) A tissue culture induced Adhl null mutant of maize results from a single base change. Mol Gen Genet 210: 181–183

    Article  CAS  Google Scholar 

  • Dennis ES, Walker JC, Llewellyn DJ, Ellis JG, Singh K, Tokuhisa JG, Wolstenholme DR, Peacock WJ (1987b) The response to anaerobic stress: transcriptional regulation of genes for anaerobically induced proteins. In: von Wettstein D, Chua N-H (eds) Plant molecular biology. Plenum, New York, pp 407–417

    Google Scholar 

  • Dennis ES, Geriach WL, Walker JC, Lavin M, Peacock WJ (1988) Anaerobically regulated aldolase gene of maize: a chimaeric origin? J Mol Biol 202: 759–767

    Article  PubMed  CAS  Google Scholar 

  • Dlouhy SR (1980) Genetic, biochemical and physiological analysis involving the Adh2 locus of Zea mays. PhD Dissertation, Indiana University, Bloomington

    Google Scholar 

  • Doring H-P, Starlinger P (1986) Molecular genetics of transposable elements in plants. Annu Rev Genet 20:175–200

    Article  PubMed  CAS  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332

    Article  CAS  Google Scholar 

  • Edallo S, Zucchinali C., Perenzin M, Salamini F (1981) Chromosomal variation and frequency of spontaneous mutation associated with in vitro culture and plant regeneration in maize. Maydica 26: 39–56

    Google Scholar 

  • Ferl RJ (1990) ARF-B2: a protein complex that specifically binds to part of the anaerobic response element of maize Adhl. Plant Physiol 93: 1094–1101

    Article  PubMed  CAS  Google Scholar 

  • Ferl RJ, Nick HS (1987) In vivo detection of regulatory factor binding sites in the 5’ flanking region of maize Adhl. J Biol Chem 262: 7947–7950

    PubMed  CAS  Google Scholar 

  • Freeling M (1974) Dimerization of multiple maize ADHs studied in vivo and in vitro. Biochem Genet 12: 407–417

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Bennett DC (1985) Maize Adhl. Annu Rev Genet 19: 297–323

    Article  PubMed  CAS  Google Scholar 

  • Freeling M, Schwartz D (1973) Genetic relationships between the multiple alcohol dehydrogenases of maize. Biochem Genet 8: 27–36

    Article  PubMed  CAS  Google Scholar 

  • Gaut BS, Clegg MT (1991) Molecular evolution of alcohol dehydrogenase 1 in members of the grass family. Proc Natl Acad Sci USA 88: 2060–2064

    Article  PubMed  CAS  Google Scholar 

  • Gerlach WL, Pryor AJ, Dennis ES, Ferl RJ, Sachs MM, Peacock WJ (1982) cDNA cloning and induction of the alcohol dehydrogenase (Adhl) gene of maize. Proc Natl Acad Sci USA 79: 2981–2985

    Article  PubMed  CAS  Google Scholar 

  • Gregerson R, McLean M, Beld M, Gerats AGM, Strommer J (1991) Structure, expression, chromosomal location and product of the gene encoding ADHl in Petunia. Plant Mol Biol 17: 37–48

    Article  PubMed  CAS  Google Scholar 

  • Hake S, Taylor WC, Freeeling M (1984) Molecular analyses of genetically stable mutants of the maize Adhl gene. Mol Gen Genet 194: 42–48

    Article  CAS  Google Scholar 

  • Hake S, Kelley P, Taylor WC, Freeling M (1985) Coordinate induction of alcohol dehydrogenase 1, aldolase, and other anaerobic RNAs in maize. J Biol Chem 260: 5050–5054

    PubMed  CAS  Google Scholar 

  • Howard EA, Walker JC, Dennis ES, Peacock WJ (1987) Regulated expression of an alcohol dehydrogenase 1 chimaeric gene introduced into maize protoplasts. Planta 170: 535–540

    Article  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989) Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58: 799–839

    Article  PubMed  CAS  Google Scholar 

  • Kyozuka J, Olive M, Peacock WJ, Dennis ES, Shimamoto K (1994) Promoter elements required for developmental expression of the maize Ahdl gene in transgenic rice. The Plant Cell (in Press).

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197–214

    Article  Google Scholar 

  • Llewellyn DJ, Finnegan EJ, Ellis JG, Dennis ES, Peacock WJ (1987) Structure and expression of an alcohol dehydrogenase 1 gene from Pisum sativum (cv. Greenfeast). J Mol Biol 195: 115–123

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen KR, Walbot V (1991) Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol Gen Genet 225: 81–93

    Article  PubMed  CAS  Google Scholar 

  • Maniatis T, Goodbourn S, Fischer JA (1987) Regulation of inducible and tissue-specific gene expression. Science 236: 1237–1244

    Article  PubMed  CAS  Google Scholar 

  • McCoy TJ, Phillips R L (1982) Chromosome stability in maize (Zea mays) tissue cultures and sectoring in some regenerated plants. Can J Genet Cytol 24: 559–565

    Google Scholar 

  • McElroy D, Zhang WG, Cao J, Wu R (1990) Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 2: 163–171

    PubMed  CAS  Google Scholar 

  • Mitchell LE, Dennis ES, Peacock WJ (1989) Molecular analysis of an alcohol dehydrogenase (Adh) gene from chromosome 1 of wheat. Genome 32: 349–358

    Article  PubMed  CAS  Google Scholar 

  • Mitchell PJ, Tjian R (1989) transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Novak FJ, Daskalov S, Brunner H, Nesticky M, Afza R, Dolezelova M, Lucretti S, Herichova A, Hermelin T (1988) Somatic embryogenesis in maize and comparison of genetic variability induced by gamma radiation and tissue culture techniques. Plant Breed 101: 66–79

    Article  Google Scholar 

  • Oard JH, Paige D, Dvorak J (1989) chimeric gene expression using maize intron in cultured cells of bread wheat. Plant Cell Rep 8: 156–160

    Article  CAS  Google Scholar 

  • Okimoto R, Sachs MM, Porter EK, Freeling M (1980) Patterns of polypeptide synthesis in various maize organs under anaerobiosis. Planta 150: 89–94

    Article  CAS  Google Scholar 

  • Olive MR, Walker JC, Singh K, Dennis ES, Peacock WJ (1990) Functional properties of the anaerobic responsive element of the maize Adhl gene. Plant Mol Biol 15: 593–604

    Article  PubMed  CAS  Google Scholar 

  • Olive MR, Peacock WJ, Dennis ES (1991) The anaerobic responsive element contains two GC-rich sequences essential for binding a nuclear protein and hypoxic activation of the maize Adhl promoter. Nucl Acids Res 19: 7053–7060

    Article  PubMed  CAS  Google Scholar 

  • Paul A-L, Ferl RJ (1991a) Adh1 and Adh2 regulation. Maydica 36: 129–134

    Google Scholar 

  • Paul A-L, Ferl RJ (1991b) In vivo footprinting reveals unique cis-elements and different modes of hypoxic induction in maize Adh1 and Adh2. Plant Cell 3: 159–168

    PubMed  CAS  Google Scholar 

  • Peacock J, Wolstenholme D, Walker J, Singh K, Llewellyn D, Ellis J, Dennis L (1987) Developmental and environmental regulation of the maize alcohol dehydrogenase 1 (Adhl) gene: promoter-enhancer interactions. In: McIntosh L, Key J (eds) Plant gene systems and their biology. Alan R. Liss, New York, pp 263–277

    Google Scholar 

  • Peschke VM, Phillips RL, Gengenbach BG (1987) Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807

    Article  PubMed  CAS  Google Scholar 

  • Peschke VM, Phillips RL, Gengenbach BG (1991) Genetic and molecular analysis of tissue-culture-derived Ac elements. Theor Appl Genet 82: 121–129

    Article  CAS  Google Scholar 

  • Peschke VM, Phillips RL (1991) Activation of the maize transposable element suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81: 90–97

    Article  Google Scholar 

  • Roberts JKM, Callis J, Wemmer D, Walbot V, Jardetzky O (1984) Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc Natl Acad Sci USA 81: 3379–3383

    Article  PubMed  CAS  Google Scholar 

  • Rowland LJ, Strommer JN (1986) Anaerobic treatment of maize roots affects transcription of Adh1 and transcript stability. Mol Cell Biol 6: 3368–3372

    PubMed  CAS  Google Scholar 

  • Sachs MM, Freeling M, Okimoto R (1980) The anaerobic proteins of maize. Cell 20: 761–767

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D (1969a) An example of gene fixation resulting from selective advantage in suboptimal conditions. Am Nat 103: 479–481

    Article  Google Scholar 

  • Schwartz D (1969b) Alcohol dehydrogenase in maize: genetic basis for multiple isozymes. Science 164: 585–586

    Article  PubMed  CAS  Google Scholar 

  • Schwartz D (1971) Genetic control of alcohol dehydrogenase — a competition model for regulation of gene action. Genetics 67: 411–425

    PubMed  CAS  Google Scholar 

  • Struhl K (1989) Helix-turn-helix, zinc-finger, and leucine-zipper motifs for eukaryotic transcriptional regulatory proteins. Trends Biochem Sci 14: 137–140

    Article  PubMed  CAS  Google Scholar 

  • Vasil V, Clancy M, Ferl RJ, Vasil IK, Hannah LC (1989) Increased gene expression by the first intron of maize Shrunken-1 locus in grass species. Plant Physiol 91: 1575–1579

    Article  PubMed  CAS  Google Scholar 

  • Walker JC, Howard EA, Dennis ES, Peacock WJ (1987) DNA sequences required for anaerobic expression of the maize alcohol dehydrogenase 1 gene. Proc Natl Acad Sci USA 84: 6624–6628

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Wu R (1990) Molecular analysis of an alcohol dehydrogenase-encoding genomic clone (adh2) from rice. Gene 87: 185–191

    Article  PubMed  CAS  Google Scholar 

  • Zehr BE, Williams ME, Duncan DR, Widholm JM (1987) Somaclonal variation in the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Can J Bot 65: 491-499491–499

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brettel, R.I.S., Olive, M.R., Dennis, E.S. (1994). Alcohol Dehydrogenases in Maize Cell Cultures. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics