Skip to main content
Book cover

Maize pp 417–430Cite as

Mitochondrial Genome Organization in cmsT-Regenerated Maize Plants

  • Chapter
  • 527 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

Abstract

Cytoplasmic male sterile (cms) plants have normal appearance, but are characterized by the failure to shed viable pollen. However, the morphological and cytological expression of the sterile phenotype varies from species to species, and ranges from degenerated anthers to inviable pollen (Hanson and Conde 1985). The trait is maternally inherited, and the accumulated evidence shows that the cms genetic determinants are mitochondrial rather than chloroplast.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit 1 gene in sorghum. Cell 47: 567–576

    Article  PubMed  CAS  Google Scholar 

  • Beckett JB (1971) Classification of male sterile cytoplasms in maize (Zea mays L.). Crop Sci 11: 724–726

    Google Scholar 

  • Boeshore ML, Hanson MR, Izhar S (1985) A variant mitochondrial DNA arrangement specific to Petunia stable sterile somatic Hybrids. Plant Mol Biol 4: 125–132

    Article  CAS  Google Scholar 

  • Brettell RIS, Goddard BVD, Ingram DS (1979) Selection of Tms-cytoplasm maize tissue cultures resistant to Drechslern maydis T-toxin. Maydica 24: 203–213

    Google Scholar 

  • Brettell RIS, Thomas E, Ingram DS (1980) Reversion of Texas male-sterile cytoplasm maize in culture to give fertile, T-toxin-resistant plants. Theor Appl Genet 58: 55–58

    Google Scholar 

  • Dewey RE, Levings CS III, Timothy DH (1986) Novel recombinations in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44:439–449

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84: 5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1991) chimeric mitochondrial genes expressed in the C male-sterile cytoplasm of maize. Curr Genet 20: 475–482

    Article  PubMed  CAS  Google Scholar 

  • Duvick DN (1965) Cytoplasmic pollen sterility in corn. Adv Genet 13: 1–56

    Article  Google Scholar 

  • Escote LJ, Gabay-Laughan SJ, Laughan J (1985) Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids. Plasmid 14: 264–267

    Article  PubMed  CAS  Google Scholar 

  • Fauron CM-R, Havlik M (1988) The BamHI/XhoI, Smal restriction enzyme maps of the normal maize mitochondrial genotype B37. Nucl Acids Res 16: 10395

    Article  PubMed  CAS  Google Scholar 

  • Fauron CM-R, Abbott AG, Brettell RIS, Gesteland RF (1987) Maize mitochondrial DNA rearrangements between the normal type, the Texas male sterile cytoplasm and a fertile revertant cms-T regenerated plant. Curr Genet 11: 339–346

    Article  CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Lonsdale D, Nichols L (1989) Mitochondrial genome organization of the maize cytoplasmic male sterile type T. Mol Gen Genet 216: 395–401

    Article  CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Brettéll RIS (1990a) The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genet 124: 423–428

    CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Hafezi S, Brettell RIS, Albertsen M (1990b) Study of two different recombination events in maize cmsT regenerated plants during reversion to fertility. Theor Appl Genet 79: 593–599

    Article  CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Casper M (1991) Organization and evolution of the maize mitochondrial genome. In: Herrmann RG, Larkins B (eds) Plant Mol Biol. Plenum Press, New York, pp 345–363

    Google Scholar 

  • Fauron CM-R, Casper M, Gesteland R, Albertsen M (1992) A multi recombination model for the mtDNA rearrangements seen in maize cmsT regenerated plants. Plant J 2: 949–958

    Article  CAS  Google Scholar 

  • Forde BG, Leaver CJ (1980) Nuclear and cytoplasmic gene controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci USA 77: 418–422

    Article  PubMed  CAS  Google Scholar 

  • Forde BG, Oliver RJC, Leaver CJ (1978) variation in mitochondrial translation products associated with male-sterile cytoplasms in maize. Proc Natl Acad Sci USA 75: 3841–3845

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74: 5113–5117

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG, Connelly JA, Pring DR, Conde MF (1981) Mitochondrial DNA variation in maize plants regenerated during tissue culture selection. Theor Appl Genet 59:161–167

    Article  CAS  Google Scholar 

  • Grill LK, Garger SJ (1981) Identification and characterization of double-stranded RNA associated with cytoplasmic male sterility in Vicia faba. Proc Natl Acad Sci USA 78: 7043–7046

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25: 461–486

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cytol 94: 213–267

    Article  CAS  Google Scholar 

  • Hanson MR, Young EG, Rothenberg M (1988) Sequence and expression of a fused mitochondrial gene, associated with Petunia cytoplasmic male sterility, compared with normal mitochondrial genes in fertile and sterile plants. Philos Trans R Soc Lond B 319: 199–208

    Article  CAS  Google Scholar 

  • Hanson MR, Pruitt KD, Nivison HT (1989) Male sterility loci in plant mitochondrial genomes. Oxford Surv Plant Mol Cell Biol 6: 61–85

    CAS  Google Scholar 

  • Hooker AL, Smith DR, Lim SM, Beckett JB (1970) Reaction of corn seedlings with male sterile cytoplasm to Helminthosporium maydis. Plant Dis Rep 54: 708–712

    Google Scholar 

  • Kadowaki K, Takeshi S, Kazama S (1990) A chimeric gene containing the 5’ portion of atp6 is associated with cytoplasmic male sterility of rice. Mol Gen Genet 224: 10–16

    Article  PubMed  CAS  Google Scholar 

  • Kemble RJ, Bedbrook JR (1980) Low molecular weight circular and linear DNA in mitochondria from normal and male sterile Zea mays cytoplasm. Nature 284: 565–566

    Article  CAS  Google Scholar 

  • Kheyr-Pour A, Gracen VE, Everett HL (1981) Genetics of fertility restoration in the C-group of cytoplasmic male sterility in maize. Genetics 98: 379–388

    PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan SJ (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17: 27–48

    Article  PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan SJ, Carlosn JE (1981) characteristics of cms-S reversion to male fertility in maize. Stadler Symp 13: 93–114

    CAS  Google Scholar 

  • Lee S-LJ, Warmke HE (1979) Organelle size and number in fertile and T-cy toplasmic male-sterile com. Am J Bot 66: 141–148

    Article  Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250: 942–947

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Dewey RE (1988) Molecular studies of cytoplasmic male sterility in maize. Philos Trans R Soc Lond B 319:93–102

    Article  Google Scholar 

  • Levings CS III, Pring DR (1976) Restriction endonuclease analysis of mitochondrial DNA from normal and Texas cytoplasmic male-sterile maize. Science 193: 158–160

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Sederoff RR (1983) Nucleotide sequence of the S-2 mitochondrial DNA from the S cytoplasm of maize. Proc Natl Acad Sci USA 80: 4055–4059

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Kim BC, Pring DR, Conde MF, Mans RJ, Laughnan JR, Gabay-Laughnan SJ (1980) Cytoplasmic reversion of cmsS in maize: association with a transpositional event. Science 209: 1021–1023

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Andre CP, Walbot V (1991) Analysis of a 120 kilobase mitochondrial chromosome in maize. Genetics 128:417–424

    PubMed  CAS  Google Scholar 

  • Lonsdale DM, Hodge TP, Fauron CM-R (1984) The physical map of the mitochondrial genome from the fertile cytoplasm of maize. Nucl Acids Res 12: 9249–9261

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie SA, Chase CD (1990) Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2: 905–912

    PubMed  CAS  Google Scholar 

  • Makaroff CA, Apel IJ, Palmer JD (1989) The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish. J Biol Chem 264: 11706–11713

    PubMed  CAS  Google Scholar 

  • Matthews DEP, Gregory P, Gracen VE (1979) Helminthosporium maydis race T toxin induces leakage of NAD+ from T cytoplasm corn mitochondria. Plant Physiol 63: 1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ, Koeppe DE (1971) Southern corn leaf blight: susceptible and resistant mitochondria. Science 173: 67–69

    Article  PubMed  CAS  Google Scholar 

  • Newton KJ (1988) Plant mitochondrial genomes: organization, expression and variation. Annu Rev Plant Physiol Plant Mol Biol 39: 503–532

    Article  CAS  Google Scholar 

  • Nivison HT, Hanson MR (1989) Identification of a mitochondrial protein associated with cytoplasmic male sterility in Petunia. Plant Cell 1: 1121–1130

    PubMed  CAS  Google Scholar 

  • Paillard M, Sederoff RR, Levings CS III (1985) Nucleotide sequence of the S-1 mitochondrial DNA from the S cytoplasm of maize. EMBO J 4: 1125–1128

    PubMed  CAS  Google Scholar 

  • Pring DR, Levings CS III (1978) Heterogeneity of maize cytoplasmic genomes among male-sterility cytoplasms. Genetics 89: 121–136

    PubMed  CAS  Google Scholar 

  • Pring DR, Lonsdale DM (1985) Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol 97: 1–46

    Article  CAS  Google Scholar 

  • Rasmussen J, Hanson MR (1989) A NADH dehydrogenase subunit gene is co-transcribed with the abnormal Petunia mitochondrial gene associated with cytoplasmic male sterility. Mol Gen Genet 215: 332–336

    Article  PubMed  CAS  Google Scholar 

  • Rottmann WH, Brears T, Hodge TP, Lonsdale DM (1987) Mitochondrial gene is lost via homologous recombination during reversion of cmsT maize to fertility. EMBO J 6:1541–1546

    PubMed  CAS  Google Scholar 

  • Scalla R, Duc G, Rigard J, Lefbvre A, Meignoz R (1981) RNA-containing intracellular vesicles in cytoplasmic male-sterile faba bean (Vicia faba L.). Plant Sci Lett 22: 269–277

    Article  CAS  Google Scholar 

  • Schardl CL, Lonsdale DM, Pring DR, Rose KR (1984) Linearization of maize mitochondrial chromosomes by recombination with linear episomes. Nature 310: 292–296

    Article  CAS  Google Scholar 

  • Schardl CL, Pring DR, Lonsdale DM (1985) Mitochondrial DNA rearrangements associated with fertile revenants of S-type male sterile maize. Cell 43: 361–368

    Article  PubMed  CAS  Google Scholar 

  • Small I, Suffolk R, Leaver CJ (1989) Evolution of plant, mitochondrial genomes in substoichiometric intermediates. Cell 58: 69–76

    Article  PubMed  CAS  Google Scholar 

  • Turpen T, Garger SJ, Grill LK (1988) On the mechanism of cytoplasmic male sterility in the 447 line of Vicia faba. Plant Mol Biol 10: 489–497

    Article  CAS  Google Scholar 

  • Umbeck PF, Gengenbach BG (1983) Reversion of male-sterile T cytoplasm maize to male fertility in tissue culture. Crop Sci 23: 584–588

    Article  CAS  Google Scholar 

  • Warmke HE, Lee S-LJ (1977) Mitochondrial degeneration in Texas cytoplasmic male-sterile corn anthers. JHered 68: 213–222

    Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987) Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84: 2858–2862

    Article  PubMed  CAS  Google Scholar 

  • Young EG, Hanson MR (1987) A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell 50:41-4941–49

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fauron, C.MR. (1994). Mitochondrial Genome Organization in cmsT-Regenerated Maize Plants. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics