Skip to main content
Book cover

Maize pp 276–292Cite as

Insecticide-Resistant Maize Plants Regenerated in Vitro

  • Chapter
  • 527 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

Abstract

Susceptibility to damage by insecticides is generally not a problem for agronomic crops due to early screening during the variety development phase. However, maize carrying the Texas male sterile cytoplasm (cms-T), but not other cytoplasms, is selectively damaged by the insecticide carbamate methomyl (active ingredient of Lannate). The cytoplasm-specific susceptibility is similar, and possibly identical, to susceptibility to the T toxin from the fungus Bipolaris maydis race T, the agent responsible for southern corn leaf blight in cms-T maize (Humaydan and Scott 1977; Koeppe et al. 1978). The similar selectivity of these compounds may be due to the cms-T-specific gene product of T-utf 13, a mito-chondrial membrane protein designated URF13, that interacts with both methomyl and T toxin (Wise et al. 1987a; Dewey et al. 1988, Huang et al. 1990). The binding of methomyl or toxin presumably opens membrane channels, leading to massive ion leakage, loss of membrane potential, and thus arrest of oxidative phosphorylation (Braun et al. 1989, 1990; Levings 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckett JB (1971) Classification of male-sterile cytoplasms in maize (Zea mays L). Crop Sci 11: 724–427

    Google Scholar 

  • Braun CJ, Siedow JN, Williams ME, Levings CS III (1989) Mutations in the maize mitochondrial Turfl3 gene eliminate sensitivity to a fungal pathotoxin. Proc Natl Acad Sci USA 86: 4435–4439

    Article  PubMed  CAS  Google Scholar 

  • Braun CJ, Siedow JN, Levings CS III (1990) Fungal toxins bind to the URF13 protein in maize mitochondria and Escherichia coli. Plant Cell 2: 153–161

    PubMed  CAS  Google Scholar 

  • Brettell RIS, Goddard BVD, Ingram DS (1979) Selection of Tms-cytoplasm maize tissue cultures resistant to Drechslerei maydis T-toxin. Maydica 24: 203–213

    Google Scholar 

  • Brettell RIS, Thomas E, Ingram DS (1980) Reversion of Texas male-sterile cytoplasm maize in culture to give fertile T-toxin-resistant plants. Theor Appl Genet 58: 55–58

    Google Scholar 

  • Chu CC, Wang CC, Sun CS, Hsu C., Yin KC, Chu CY (1975) Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 16:659–688

    Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cytoplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84: 5374–5378

    Article  PubMed  CAS  Google Scholar 

  • Dewey RE, Siedow JN, Timothy DH, Levings CS III (1988) A 13-kilodalton maize mitochondrial protein in E. coli confers sensitivity to Bipolaris maydis toxin. Science 239: 293–295

    Article  PubMed  CAS  Google Scholar 

  • Duncan R, Willams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332

    Article  CAS  Google Scholar 

  • Earle ED, Gracen VE, Yoder OC, Gemmill KP (1978) Cytoplasm-specific effects of Helminthosporium maydis race T toxin on survival of corn mesophyll protoplasts. Plant Physiol 61: 420–424

    Article  PubMed  CAS  Google Scholar 

  • Earle ED, Gracen VE, Best VM, Batts LA, Smith ME (1987) Fertile revertants from S-type male-sterile maize grown in vitro. Theor Appl Genet: 74: 601–609

    Article  Google Scholar 

  • Escote LJ, Gabay-Laughnan SJ, Laughnan JR (1985) Cytoplasmic reversion to fertility in cms-S maize need not involves loss of linear mitochondrial plasmids. Plasmid 14: 264–267

    Article  PubMed  CAS  Google Scholar 

  • Escote LJ, Laughnan JR, Gabay-Laughnan SJ (1986) Changes in nuclear genomic background bring about reorganization of mitochondrial DNA in maize. Int Worksh Higher plant mitochondrial DNA, International Society for Plant Molecular Biology, 19-24 Oct 1986, Airlie, VA, p 11 (Abstr)

    Google Scholar 

  • Fauron CM-R, Abbott AG, Brettell RIS, Gesteland RF (1987) Maize mitochondrial DNA rearrangements between the normal type, the Texas male sterile cytoplasm, and a fertile revertant cms-T regenerated plant. Curr Genet 11: 339–346

    Article  CAS  Google Scholar 

  • Forde BJ, Leaver CJ (1980) Nuclear and cytoplasmic genes controlling synthesis of variant mitochondrial polypeptides in male-sterile maize. Proc Natl Acad Sci USA 7: 418–422

    Article  Google Scholar 

  • Gengenbach BG, Green CE (1975) Selection of T-cytoplasm maize callus cultures resistant to Helminthosporium maydis race T pathotoxin. Crop Sci 15: 645–649

    Article  Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74: 5113–5117

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG, Connelly JA, Pring DR, Conde MF (1981) Mitochondrial DNA variation in maize plants regenerated during tissue culture selection. Theor Appl Genet 59: 161–167

    Article  CAS  Google Scholar 

  • Gregory P, Earle ED, Gracen VE (1980) Effects of purified Helminthosporium maydis Race T toxin on the structure and function of mitochondria and protoplasts. Plant Physiol 66: 477–481

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Lee SH, Lin C., Medici R, Hack E, Myers AM (1990) Expression in yeast of the T-ufI3 protein from Texas male-sterile maize mitochondria confers sensitivity to methomyl and to Texas-cytoplasm-specific fungal toxins. EMBO J 9: 339–347

    PubMed  CAS  Google Scholar 

  • Humaydan HS, Scott EW (1977) Methomyl insecticide selective phytotoxicity on sweet corn hybrids and inbreds having the Texas male sterile cytoplasm. HortScience 12: 312–313

    CAS  Google Scholar 

  • Ishige T, Storey KK, Gengenbach BG (1985) Cytoplasmic fertile revertants possessing SI and S2 DNAs in S male-sterile maize. Jpn J Breed 35: 285–291

    Google Scholar 

  • Kemble RJ, Gunn RE, Flavell RB (1980) Classification of normal and male-sterile cytoplasms in maize. II. Electrophoretic analysis of DNA species in mitochondria. Genetics 95: 451–458

    CAS  Google Scholar 

  • Kennell JC, Wise RP, Pring DR (1987) Influence of nuclear background on transcription of a maize mitochondrial region associated with Texas male sterile cytoplasm. Mol Gen Genet 240: 399–406

    Article  Google Scholar 

  • Koeppe DE, Cox JK, Malone CP (1978) Mitochondrial heredity: a determinant in the toxic response of maize to the insecticide methomyl. Science 201: 1227–1229

    Article  PubMed  CAS  Google Scholar 

  • Kuehnle AR (1988) In vitro selection for methomyl resistance in Texas male sterile maize (Zea mays L.). PhD Dissertation, Cornell University, Ithaca

    Google Scholar 

  • Kuehnle AR, Earle ED (1989) In vitro selection for methomyl resistance in cms-T maize. Theor Appl Genet 78: 672–682

    Article  CAS  Google Scholar 

  • Kuehnle AR, Earle ED (1992) Evaluation of in vitro selection regimes for a mitochondrial trait (methomyl resistance) in cms-T maize. Plant Cell Tissue Organ Cult 28: 129–137

    Article  CAS  Google Scholar 

  • Lemke CA, Gracen VE, Everett HL (1988) A second source of cytoplasmic male sterility in maize induced by the nuclear gene iojap. J Hered 79: 459–464

    Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250: 942–947

    Article  PubMed  CAS  Google Scholar 

  • Levings CS III, Pring DR (1977) Diversity of mitochondrial genomes among normal cytoplasms of maize. J Hered 68: 350–354

    CAS  Google Scholar 

  • McNay JW, Pring DR, Lonsdale DM (1983) Polymorphism in mitochondrial DNA “S” regions among normal cytoplasms of maize. Plant Mol Biol 2: 177–187

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Newton KJ, Walbot V (1985) Molecular analysis of mitochondria from a fertility restorer line of maize. Plant Mol Biol4: 247–252

    Article  CAS  Google Scholar 

  • Pring DR, Levings CS III, Conde ME (1979) The organelle genomes of cytoplasmic male-sterile maize and sorghum. In: Davies DR, Hopwood DA (eds) The plant genome. John Innes Charity, Norwich, UK, pp 111–120

    Google Scholar 

  • Rottmann WH, Brears T, Hodge TP, Lonsdale DM (1987) A mitochondrial gene is lost via homologous recombination during reversion of cms-T maize to fertility. EMBO J 6: 1541–1546

    PubMed  CAS  Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J 6: 865–869

    PubMed  CAS  Google Scholar 

  • Small ID, Earle ED, Escote-Carlson LJ, Gabay-Laughnan S, Laughnan JR, Leaver CJ (1988) A comparison of cytoplasmic revertants to fertility from different cms-S maize sources. Theor Appl Genet 76: 609–618

    Article  Google Scholar 

  • Umbeck, PF, Gengenbach BG (1983) Reversion of male-sterile T-cytoplasm maize to male fertility in tissue culture. Crop Sci 23: 584–588

    Article  CAS  Google Scholar 

  • Wise RP, Fliss AE, Pring DR, Gengenbach BG (1987a) urf13-T of T cytoplasm maize mitochondria encodes a 13-kD polypeptide. Plant Mol Biol 9: 121–126

    Article  CAS  Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987b) Mutation to male fertility and toxin insensitivity in Texas (T)-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84: 2858–2862

    Article  PubMed  CAS  Google Scholar 

  • Zabala G, Gabay-Laughnan S, Laughnan JR (1990) Nuclear genotype affects mitochondrial genome organization of maize. 4th Int Worksh Plant mitochondrial DNA, Ithaca, NY4th Int Worksh Plant mitochondrial DNA, Ithaca, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuehnle, A.R., Earle, E.D. (1994). Insecticide-Resistant Maize Plants Regenerated in Vitro. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics