Skip to main content

Biotechnology in Maize Improvement

  • Chapter
Maize

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 25))

  • 543 Accesses

Abstract

Maize (Zea mays L.), along with rice and wheat, is one of the most important cereal crops, being used both as human food and animal feed. It apparently originated in Mexico, the oldest archeological record (7000 years) being found in the Tehuacan valley, then spread to the Americas, Europe and Asia (Benson and Pearce 1987). Now it is being grown throughout the whole world (Table 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson PC, Georgeson M (1989) Herbicide-tolerant mutants of corn. Genome 31: 994–999.

    CAS  Google Scholar 

  • Anderson PC, Hibberd KA (1985) Evidence for the interaction of an imidazolinone herbicide with leucine, valine and isoleucine metabolism. Weed Sci 33: 429–438

    Google Scholar 

  • Antonelli NM, Stadler J (1989) Chemical methods for efficient direct gene transfer to maize cells; treatment with polyethylene glycol or polybrene. J Genet Breed 43: 113–122

    Google Scholar 

  • Antonelli NM, Stadler J (1990) Genomic DNA can be used with cationic methods for highly efficient transformation of maize protoplasts. Theor Appl Genet 80: 395 401

    Google Scholar 

  • Armstrong CL, Green CE (1985) Establishment and maintenance of friable embryogenic maize callus and the involvement of L-proline. Planta 164: 207–214

    CAS  Google Scholar 

  • Armstrong CL, Phillips RL (1988) Genetic and cytogenetic variation in plants regenerated from organogenic and friable embryogenic tissue cultures of maize. Crop Sci 28: 363–369

    Google Scholar 

  • Armstrong CL, Petersen WL, Buchholz WG, Bowen BA, Sulc SL (1990) Factors affecting PEG-mediated stable transformation of maize protoplasts. Plant Cell Rep 9: 335–339

    CAS  Google Scholar 

  • Bajaj YPS (1977) Cryopreservation of pollen and pollen embryos, and the establishment of pollen banks. Int Rev Cytol 107: 397–420

    Google Scholar 

  • Bajaj YPS (1979) Test-tube fertilization and development of maize (Zea mays L.) plants. Indian J Exp Biol 17:475–178

    Google Scholar 

  • Bajaj YPS (ed) (1986-1993) Biotechnology in agriculture and forestry, vol 1-24. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bajaj YPS (ed) (1990a) Biotechnology in agriculture and forestry, vol 12: Haploids in crop improvement I: Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bajaj YPS (1990b) Somaclonal variation origin, induction, cryopreservation, and implications in plant breeding. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York Tokyo, pp 3–48

    Google Scholar 

  • Bajaj YPS (1990c) Cryopreservation of germplasm of wheat. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry vol 13. Wheat. Springer, Berlin Heidelberg New York pp 669–681

    Google Scholar 

  • Bajaj YPS, Gupta RK (I987) Plants from salt tolerant cell lines of napier grass Penniselum purpureum Schum. Indian J Exp Biol 25: 58–60

    Google Scholar 

  • Bajaj YPS, Sala F (1991) Cryopreservation of germplasm of rice. In: Bajaj YPS(ed) Biotechnology in agriculture and forestry, vol 14: Rice. Springer, Berlin Heidelberg New York pp 553–571

    Google Scholar 

  • Bajaj YPS, Bopp M, Satinder Bajaj (1973) Patterns of peroxidases and differentiation in Sinapis alba. Phytomorphology 23: 43–52

    Google Scholar 

  • Bajaj YPS, Gosal SS, Gill MS (1991) Somatic hybridization — a biotechnological approach to plant breeding. In: Mandai AK, Ganguli PK, Banerjee SP (eds) Advances in plant breeding, vol 2. CBS, Delhi, pp 161–184

    Google Scholar 

  • Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tuf A gene to the nucleus. Nature 344: 262–265

    CAS  Google Scholar 

  • Barloy D, Denis L, Beckert M (1989) Androgenetic aptitude of DH lines obtained through anther culture. Maydica 34: 303–308

    Google Scholar 

  • Barnabas B, Rajki E (1976) Storage of maize (Zea mays L.) pollen in liquid nitrogen. Euphytica 25: 747–752

    Google Scholar 

  • Barnabás B, Rajki E (1981) Fertility of deep-frozen maize (Zea mays L.) pollen. Ann Bot 48: 861–864

    Google Scholar 

  • Beckert M (1986) Quelques systèmes de production de plantes haploïdes chez le maÄ­s, perspectives d’utilisation. Le Selectionneur Francais 36: 29–46

    Google Scholar 

  • Beckett JB (1971) Classification of male sterile cytoplasms in maize (Zea mays L.). Crop Sci 11: 724–726

    Google Scholar 

  • Bennetzen JL, Cresse A, Brown WE, Lee L (1987) Molecular cloning of maize genes by transposon tagging with Muiator. UCLA Symp. Mol Cell Biol 92: 183–204

    Google Scholar 

  • Benson GO, Pearce RB(1987) Corn perspective and culture. In: Watson SA, Ramstad PE (eds) Corn, chemistry and technology. AACC, St Paul, pp 169–231

    Google Scholar 

  • Bernard S, Jewell DC (1985) Crossing maize with sorghum, Tripsacum and millets: the products and their level of development following pollination. Theor Appl Genet 70: 474–483

    Google Scholar 

  • Bernstein L (1964) Salt tolerance of plants. USDA Agric Inf Bull 283

    Google Scholar 

  • Bhaskaran S, Smith RH, Schertz KF (1986) Progeny screening of sorghum plants regenerated from sodium chloride-selected callus for salt tolerance. J Plant Phsyiol 122: 205–210

    Google Scholar 

  • Bocsi J, Barnabás B, Sutka J (1986) Study of cold tolerance in maize using tissue culture methods. In: Napjaink biotechnologiaja. A Z. Novenyi Sejtgenetikai Szimpozium Eloadasai. OMIK.KOMFB, Budapest, pp 100–101 (in Hungarian)

    Google Scholar 

  • Boucaud MT de, Cambecedes J (1988) The use of 1,2-propanediol for cryopreservation of recalcitrant seeds: the model case of Zea mays imbibed seeds. Cryo Lett 9: 94–101

    Google Scholar 

  • Bowman TR, Duvick J (1986) Selection for resistance to paraquat in maize. Abstr 6th Int Congr Plant tissue and cell culture, Univ Minnesota, Minneapolis, p 73

    Google Scholar 

  • Bretlell RIS, Goddard BVD, Ingram DS (1979) Selection of Tms-cytoplasm maize tissue cultures resistant to Drechslera maydis T-toxin. Maydica 24: 203–213

    Google Scholar 

  • Bretell RIS, Thomas E, Ingram DS (1980) Reversion of Texas male-sterile cytoplasm in maize culture to give fertile T-toxin resistant plants. Theor Appl Genet 58: 55–58

    Google Scholar 

  • Brettell RIS, Dennis ES, Scowcroft WR, Peacock WJ (1986) Molecular analysis of a somaclonal mutant of maize alcohol dehydrogenase. Mol Gen Genet 202: 235–239

    CAS  Google Scholar 

  • Chang YF (1983) Plant regeneration in vitro from leaf tissue derived from cultured immature embryos of Zea mays L. Plant Cell Rep 2: 183–185

    Google Scholar 

  • Chernyskova VG, Dolgykh YI, Shamina ZB, Butenko RG (1988) Effect of genotype properties for morphogenetic ability of maize cells in vitro. Dokl Akad Nauk USSR 300: 227–229

    Google Scholar 

  • Close KR, Lideman LA (1987) The effect of auxin-like plant growth regulators and osmotic regulation on induction of somatic embryogenesis from elite maize inbreds. Plant Sci 52: 81–89

    CAS  Google Scholar 

  • Coppens L, Dewitte D (1990) Esterase and peroxidase zymogram from barley (Hordeutn vulgare L.) callus as a biochemical marker system of embryogenesis and organogenesis. Plant Sci 67: 97–105

    CAS  Google Scholar 

  • Coumans MP, Sukhinder Singh, Swanson EB (1989) Plant development from isolated microspores of Zea mays L. Plant Cell Rep 7: 618–621

    Google Scholar 

  • De León C (1984) Maize diseases, a guide for yield identification, 3rd edn. CIMMYT, Mexico

    Google Scholar 

  • Dennis ES, Brettell RIS, Peacock WJ (1987) A tissue culture induced AdhI null mutant of maize results from a single base change. Mol Gen Genet 210: 181–183

    CAS  Google Scholar 

  • Dewey RE, Timothy DH, Levings CS III (1987) A mitochondrial protein associated with cyloplasmic male sterility in the T cytoplasm of maize. Proc Natl Acad Sci USA 84: 5374–5378

    CAS  Google Scholar 

  • Diedrick TJ, Frisch DA, Gengenbach BG (1990) Tissue culture isolation of a second mutant locus for increased threonine accumulation in maize. Theor Appl Genet 79: 209–215

    CAS  Google Scholar 

  • Doston SB, Frisch DA, Somers DA, Genegenbach BG (1990) Lysine-insensitive aspartate kinase in two threonine-overproducing mutants of maize. Planta 182: 546–552

    Google Scholar 

  • Duncan DR, Widholm JM (1987) Proline accumulation and its implications in cold tolerance of regenerable maize callus. Plant Physiol 83: 703–708

    CAS  Google Scholar 

  • Duncan DR, Widholm JM (1991) Proline is not the primary determinant of chilling tolerance induced by mannitol or abscisic acid in regenerable maize callus cultures. Plant Physiol 95: 1284–1287

    CAS  Google Scholar 

  • Duncan DR, Williams ME, Zehr BE, Widholm JM (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332

    CAS  Google Scholar 

  • Earle ED, Kuehnle AR (1990) Somaclonal variation in maize. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 326–351

    Google Scholar 

  • Earle ED, Gracen VE, Yodder OC, Gemmill KP (1978) Cytoplasm-specific effects of Helmintho-sporium maydis race T toxin on survival of corn mesophyll protoplasts. Plant Physiol 61: 420–424

    CAS  Google Scholar 

  • Earle ED, Gracen VE, Best VM, Batts LA, Smith ME (1987) Fertile revertants from S-type male-sterile maize grown in vitro. Theor Appl Genet 74: 601–609

    Google Scholar 

  • Edallo S, Zucchinali C., Perenzin M, Salamini F (1981) Chromosomal variation and frequency of spontaneous mutations associated with in vitro culture and plant regeneration in maize. Maydica 26: 39–56

    Google Scholar 

  • Esen A (1986) Separation of alcohol-soluble proteins (zeins) from maize into three fractions by differential solubility. Plant Physiol 80: 623–627

    CAS  Google Scholar 

  • Everett NP, Wach MJ, Ashworth DJ (1985) Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73. Plant Sci 41: 133–140

    CAS  Google Scholar 

  • FAO (1986) Production yearbook, FAO, Rome

    Google Scholar 

  • Fauron CM-R, Abbott AG, Brettell RIS, Gesteland RF (1987) Maize mitochondrial DNA rearrangements between the normal type, the Texas male sterile cytoplasm and a fertile revertant cms-T regenerated plant. Curr Genet 11: 339–346

    CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Brettell RIS (1990a) The mitochondrial genome organization of a maize fertile cmsT revertant line is generated through recombination between two sets of repeats. Genetics 124:423–428

    CAS  Google Scholar 

  • Fauron CM-R, Havlik M, Hafezi S, Brettell RIS, Albertsen M (1990b) Study of two different recombination events in maize cmsT regenerated plants during reversion to fertility. Theor Appl Genet 79: 593–599

    CAS  Google Scholar 

  • Federoff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35: 235–242

    Google Scholar 

  • Fransz PF, Schel JHN (1987) An ultrastructural study on early callus development from immature embryos of the maize strains A188 and A632. Acta Bot Neerl 36: 247–260

    Google Scholar 

  • Fransz PF, Schel JHN (1991a) Cytodifferentiation during the development of friable embryogenic callus of maize (Zea mays). Can J Bot 69: 26–33

    Google Scholar 

  • Fransz PF, Schel JHN (1991b) An ultrastructural study on the early development of Zea mays L. somatic embryos. Can J Bot 69: 858–865

    Google Scholar 

  • Fransz PF, De Ruijter NCA, Schel JHN (1989) Isozymes as biochemical and cytochemical markers in embryogenic callus cultures of maize (Zea mays L.). Plant Cell Rep 8: 67–70

    CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature 319: 791 793

    Google Scholar 

  • Fromm ME, Morrish F, Armstrong C., Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839

    CAS  Google Scholar 

  • Furini A, Jewell DC (1991) Somatic embryogenesis and plant regeneration of Tripsacum dactyloides L. Euphytica 55: 111–115

    Google Scholar 

  • Gaillard A, Vergne P, Beckert M (1991) Optimization of maize microspore isolation and culture conditions for reliable plant regeneration. Plant Cell Rep 10: 55–58

    Google Scholar 

  • Gengenbach BG (1977) Development of maize caryopses resulting from in vitro pollination. Planta 134: 91–93

    Google Scholar 

  • Gengenbach BG, Green CE (1975) Selection of T-cytoplasm maize callus cultures resistant to Helminthosporium maydis race T pathotoxin. Crop Sci 15: 645–649

    Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance of selected pathotoxin resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74:5113–5117

    CAS  Google Scholar 

  • Genovesi AD (1990) Maize (Zea mays L.): In vitro production of haploids. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 12. Haploids in crop improvement I. Springer, Berlin Heidelberg New York, pp 176–203

    Google Scholar 

  • Genovesi AD, Yingling RA (1990) Isolated microscope culture of Zea mays L. Abstr Int Congr IAPTC, Amsterdam

    Google Scholar 

  • Gilmore EC, Rogers JS (1958) Heat units as a method of measuring maturity in corn. Agron J 50: 611–615

    Google Scholar 

  • Golovkin MV, Abraham M, Morocz S, Bottka S, Feher A, Dudits D (1993) Production of transgenic maize plants by direct DNA uktake into embryogenic protoplasts. Plant Sci 90: 41–52

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG, O’Brien JV, Chambers SA, Adams Jr WR, Willetts NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP, Lemaux PG (1990). Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618

    CAS  Google Scholar 

  • Gould J, Dewey M, Hasegawa O, Ulian EC, Peterson G, Smith RH (1991) Transformation of Zea mays L using Agrobacterium tumefaciens and the shoot apex. Plant Physiol 95: 426–434

    CAS  Google Scholar 

  • Graves ACF, Goldman S (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens: detection of T-DNA specific enzyme activities. Plant Mol Biol 7: 43–50

    CAS  Google Scholar 

  • Green CE, Phillips RL (1975) Plant regeneration from tissue cultures of maize. Crop Sci 15: 417–421

    Google Scholar 

  • Grimsley N, Hohn T, Ramos C., Kado C., Rogowsky P(1989) DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol Gen Genet 217: 309–316

    PubMed  CAS  Google Scholar 

  • Gronwald JW, Parker WB, Somers DA, Wyse DL, Gengenbach BG (1989) Selection for tolerance to graminicide herbicides in maize tissue culture. Proc Br Crop Protect Conf Weeds 3: 1217–1224

    Google Scholar 

  • Hauptli H, Williams S (1988) Maize in vitro pollination with single pollen grains. Plant Sci 58: 231–237

    Google Scholar 

  • Hibberd KA (1984) Induction, selection and characterization of mutants in maize cell cultures. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants, vol 1. Laboratory procedures and their applications. Academic Press, New York, pp 571–576

    Google Scholar 

  • Hibberd KA, Green CE (1982) Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc Natl Acad Sci USA 79: 559–563

    CAS  Google Scholar 

  • Hibberd KA, Anderson PC, Barker M (1986a) Tryptophan overproducer mutants of cereal crops. US patent 4581847. Dated April 15, 1986

    Google Scholar 

  • Hibberd KA, Barker M, Anderson PC, Linder L (1986b) Selection for high tryptophan maize. Abstr 6th Int Congr Plant Tiss Cell Cult, Univ Minnesota, Minneapolis, p 440

    Google Scholar 

  • Huang YW, Dennis ES (1989) Factors influencing stable transformation of maize protoplasts by electroporation. Plant Cell Tissue Organ Cult 18: 281–296

    CAS  Google Scholar 

  • James J (1981) New maize × Tripsacum hybrids for maize improvement. Euphytica 28: 239–247

    Google Scholar 

  • Klein TM, Korstein L, Sanford JC, Fromm ME (1989) Genetic transformation of maize cells by particle bombardment. Plant Physiol 91: 440–444

    CAS  Google Scholar 

  • Klein TM, Kornstein L, Fromm ME (1990) Genetic transformation of maize cells by particle bombardment and the influence of methylation on foreign gene expression. In: Gustafon JP (ed) Gene manipulation in plant improvement. Plenum Press, New York, pp 265–288

    Chapter  Google Scholar 

  • Kniep KR, Mason SC (1991) Lysine and protein content of normal and opaque-2 maize grain as influenced by irrigation and nitrogen. Crop Sci 31: 177

    CAS  Google Scholar 

  • Koziel MG, Beland GL, Bowman C., Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein from Bacillus thuringiensis. Biotechnology 11: 194–200

    CAS  Google Scholar 

  • Kranz E, Loerz H (1993) In viro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plants Cell 5: 739–746

    Google Scholar 

  • Kuehnle AR, Earle ED (1989) In vitro selection for methomyl resistance in cms-T maize. Theor Appl Genet 78: 672–682

    CAS  Google Scholar 

  • Kuo CS, Lu Wenliang, Kui Yao-lin (1986) Corn (Zea mays L.): Production of pure lines through anther culture. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2. Crops I. Springer Berlin Heidelberg New York, pp 168–180

    Google Scholar 

  • Kuo CS, Gui YL, Liu JH, Shi JC (1990) Studies on the improvement of maize anther culture efficiency. In: Hu H, Wang HL (eds) Plant cell engineering and breeding. Beijing Industry Univ Press, Beijing, pp 44–47

    Google Scholar 

  • Landry J, Moureaux T (1987) Albumins and globulins in developing maize grain. Biochimie 69: 691–697

    CAS  Google Scholar 

  • Laurie DA, Bennett MD (1988a) Chromosome behaviour in wheat × maize, wheat × sorghum and barley × maize crosses. In: Brandham PE (ed) Kew Chromosome conference III. Her Majesty’s Stationery Office, London, pp 167–177

    Google Scholar 

  • Laurie DA, Bennett MD (1988b) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 78: 393–397

    Google Scholar 

  • Laurie DA, Bennett MD (1990) Early post-pollination events in hexaploid wheat × maize crosses. Sex Plant Reprod 3: 70–76

    Google Scholar 

  • Laurie DA, O’Donoughue LS, Bennett MD (1990) Wheat × maize and other wide sexual hybrids: their potential for genetic manipulation and crop improvement. In: Gustafson JP (ed) Gene manipulation in plant improvement II. Plenum Press, New York, pp 95–126

    Google Scholar 

  • Lazanyi J, Novak FJ, Brunner H, Hermelin T, Afza R (1990) Somaclonal variation in the R3 generation of a maize inbred line. Acta Agron Hung 39: 101–108

    Google Scholar 

  • Lee M, Geadelmann JL, Phillips RL (1988) Agronomic evaluation of inbred lines derived from tissue cultures of maize. Theor Appl Genet 75: 841–849

    Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250: 942–947

    CAS  Google Scholar 

  • Lin CS, Zayas JF (1987) Influence of corn germ protein on yield and quality characteristics of comminuted meat products in a model system. J Food Sci 52: 545–548

    Google Scholar 

  • Lowe K, Taylor DB, Ryan P, Paterson KE (1985) Plant regeneration via organogenesis and embryo-genesis in the maize inbred line B73. Plant Sci 41: 125–132

    Google Scholar 

  • Lu C., Vasil V, Vasil IK (1983) Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.) Theor Appl Genet 66: 285–289

    Google Scholar 

  • Lupotto E, Lusardi MC, Mongodi M (1989) In vitro selection of maize (Zea mays L.) salt tolerant somaclones and plant regeneration. J Genet Breed 43: 215–222

    Google Scholar 

  • Lusardi MC, Locatelli F, Stadler J, Lupotto E (1991) In vitro characterization of in vivo and in vitro salt-selected maize genotypes. J Genet Breed 45: 285–292

    Google Scholar 

  • Lyznik LA, Rayan RD, Ritchie SW, Hodges TK (1989) Stable transformation of maize protoplasts with gus A and neo genes. Plant Mol Biol 13: 151–161

    CAS  Google Scholar 

  • Maas C., Werr W(1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Rep 8: 148–151

    CAS  Google Scholar 

  • Maas EV, Hoffmann GJ (1977) Crop salt tolerance — current assessment. ASCE J Irrig Drainage Div 103: 115–134

    Google Scholar 

  • Magoja JL, Benito CN (1981) Inheritance of some characters in maize-perennial teosinte hybrids. Maize Genet Coop News Lett 55: 58–60

    Google Scholar 

  • Marshall LC, Keith FR, Parker WB, Somers DA, Gronwald JW, Wyse DL, Gengenbach BG (1988) Chromosome number and fatty acid levels in sethoxydim-tolerant corn cell lines. Agron Abstr 170

    Google Scholar 

  • Marshall LC, Somers DA, Dotray PD, Gengenbach BG, Wyse SB, Gronwald JW (1992) Allelic mutations in acetyl-coenzyme A carboxylase confer herbicide tolerance in maize. Theor Appl Genet 83: 435–442

    CAS  Google Scholar 

  • McCain JW, Kamo KK, Hodges TK (1988) Characterization of somatic embryo development and plant regeneration from friable maize callus cultures. Bot Gaz 149: 16–20

    Google Scholar 

  • McClintock B (1947) Cytogenetic studies of maize and Neurospom. Carnegie Inst Wash Year Book 47: 155–169

    Google Scholar 

  • McClintock B(1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Wash Year Book 53: 254–260

    Google Scholar 

  • Mertz ET, Bates LS, Nelson OE (1964) Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279–280

    CAS  Google Scholar 

  • Miao S, Duncan DR, Widholm JM (1988) Selection of regenerable maize callus cultures resistant to 5-methyl-DL-tryptophane, S-2amino-ethyl-L-cysteine and high levels of L-lysine plus L-threo-nine. Plant Cell Tissue Organ Cult 14: 3–14

    CAS  Google Scholar 

  • Mitchell JC, Petolino JF (1991) Plant regeneration from haploid suspension and protoplast cultures from isolated microspores of maize. J Plant Physiol 137: 530–536

    Google Scholar 

  • Morocz S, Donn G, Nemeth J, Dudits D (1990) An improved system to obtain fertile regenerants via maize protoplasts isolated from a highly embryogenic suspension culture. Theor Appl Genet 80: 721–726

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–197

    CAS  Google Scholar 

  • Murry LE, Johnson J, Nichols S (1989) Transient expression of B-glucuronidase in electrotrans-formed corn embryos. Am J Bot 77: 151a

    Google Scholar 

  • Nath J, Anderson JO (1975) Effect of freezing and freeze-drying on the viability and storage of Lilium longiflorum L. and Zea mays L. pollen. Cryobiology 12: 81–88

    CAS  Google Scholar 

  • Newhouse K, Wang T, Anderson P (1991) Imidazolinone-tolerant crops. In: Shaner DL, O’Connor SL (eds) The imidazolinone herbicides. CRC Press, Boca Raton, pp 139–150

    Google Scholar 

  • Novak FJ, Dolezelova M (1983) Somatic embryogenesis and plant regeneration in Zea mays L. Maydica 28: 381–390

    Google Scholar 

  • Novak FJ, Afza R, Daskalov S, Hermelin T, Lucretti S (1986) Assessment of somaclonal and radiation-induced variability in maize. In: Int Symp Nuclear techniques and in vitro culture for plant improvement. IAEA, Vienna pp 29–33

    Google Scholar 

  • O’Donoughue LS (1990) Chromosome behaviour and reproductive physiology in cereal wide-crosses. PhD Thesis, Univ Cambridge

    Google Scholar 

  • Oliver JL, Marin A, Martinez-Zapater JM (1990) Chloroplast genes transferred to the nuclear plant genome have adjusted to nuclear base composition and codon usage. Nucl Acids Res 18: 65–73

    CAS  Google Scholar 

  • Parker WB, Somers DA, Wyse DL, Keith RA, Burton JD, Gronwald JW, Gengenbach BG (1990) Selection and characterization of sethoxydim-tolerant maize tissue cultures. Plant Physiol 92: 1220–1225

    CAS  Google Scholar 

  • Pedersen B, Knudsen KEB, Eggum BO (1989) Nutritive value of cereal products with emphasis on the effect of milling. In: Bourne GH (ed) Nutritive value of cereal products, beans and starches. Karger, Basel, pp 1–91

    Google Scholar 

  • Pelcher LE, Kao KN, Gamborg OL, Yodder OC, Gracen VE (1975) Effects of Helminthosporium maydis race T toxin on protoplasts of resistant and susceptible corn (Zea mays). Can J Bot 53: 427–31

    Google Scholar 

  • Pescitelli SM, Mitchell JC, Jones AM, Pareddy DR, Petolino JF (1989) High frequency androgenesis from isolated microspores of maize. Plant Cell Rep 7: 673–676

    Google Scholar 

  • Pescitelli SM, Johnson CD, Petolino JF (1990) Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level. Plant Cell Rep 8: 628–631

    Google Scholar 

  • Petersen WL, Sule S, Armstrong CL (1992) Effects of nurse cultures on the production of micro-calli and fertile plants from maize embryogenic suspension culture protoplasts. Plant Cell Rep 10: 591–594

    Google Scholar 

  • Petolino JF, Jones AM, Thompson SA (1988) Selection for increased anther culture response in maize. Theor Appl Genet 76: 157–159

    Google Scholar 

  • Phillips RL, Somers DA, Hibberd KA (1988) Cell/tissue culture and in vitro manipulation. In: Sprague G, Dudley JW (eds) Corn and corn improvement, 3rd edn. Am Soc Agronomy, Madison, pp 346–387

    Google Scholar 

  • Pischedda D, Magoja JL (1988) Perennial teosinte introgressed population of maize: variation within S1 derived lines. Maize Genet Coop New Lett 62: 83–84

    Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT, Murthi Anishetty N (1983) Crop germplasm conservation and developing countries. Science 220: 163–169

    CAS  Google Scholar 

  • Prioli LM, Sondahl MR (1989) Plant regeneration and recovery of fertile plants from protoplasts of maize. Bio/Technology 7: 589–594

    Google Scholar 

  • Rhodes C., Pierce I, Mettler D, Mascarenhas D, Detmer J (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207

    CAS  Google Scholar 

  • Rice PR, Singh ME, Rao EN (1987) Somaclonal variation in callus-derived plants of corn (Zea mays L.). Can J Bot 29: 428–32

    Google Scholar 

  • Rines HW, Dahleen LS (1990) Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci 30: 1073–1078

    Google Scholar 

  • Rooney LW, Serna-Saldivar SO (1987) Food uses of whole corn and dry milled fractions. In: Watson SA, Ramstad PE (ed) Corn, chemistry and technology. AACC, St Paul, pp 399–429

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schaeffer RP, Yodder OC (1972) Phytotoxins in plant diseases. Academic Press, New York

    Google Scholar 

  • Shillito RD, Carswell GK, Johnson CM, DiMaio JJ, Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technology 7: 581–587

    Google Scholar 

  • Shimamoto K, Nelson OE (1981) Isolation and characterization of aminopterin-resistant cell lines in maize. Planta 153:437–42

    Google Scholar 

  • Somers DA, Marshall LC, Dotray P, Parkar WB, Yun SJ, Wyse DL, Gronwald JW, Gengenbach BG (1990) Characterization of sethoxydim-tolerant corn selected in tissue culture. Proc Corn Utilization Conf III. St Louis, MO June 20-21, p 9

    Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1988) Effect of 1-amocyclopropane-1-carboxytic acid, silver nitrate and norbornadiene on plant regeneration from maize callus cultures. Plant Cell Rep 7: 262–265

    CAS  Google Scholar 

  • Songstad DD, Duncan DR, Widholm JM (1990) Proline and polyamine involvement in chilling tolerance of maize suspension cultures. J Exp Bot 41: 289–294

    CAS  Google Scholar 

  • Spencer MT, O’Brien JV, Start WG, Adams TR, Gordon-Kamm WJ, Lemaux PG (1992) Segregation of transgenes in maize. Plant Mol Biol 18: 201–210

    CAS  Google Scholar 

  • Sprague G, Dudley JE (eds) (1988) Corn and corn improvement. Am Soc Agronomy, Madison

    Google Scholar 

  • Springer WD, Green CE, Kohn KA (1979) A histological examination of tissue culture initiation from immature embryos of maize. Protoplasma 101: 269–281

    Google Scholar 

  • Stanwood PC (1985) Cryopreservation of seed germplasm for genetic conservation. In: Kartha KK (ed) Cryopreservation of plant cells and organs. CRC Press, Boca Raton, pp 199–226

    Google Scholar 

  • Suenaga K, Nakajima K (1989) Efficient production of haploid wheat (Triticum aestivum) through crosses between Japanese wheat and maize (Zea mays). Plant Cell Rep 8: 263–266

    Google Scholar 

  • Sun CS, Prioli LM, Sondahl MR (1989) Regeneration of haploid and dihaploid plants from protoplasts of supersweet (sh2sh2) corn. Plant Cell Rep 8: 313–316

    Google Scholar 

  • Sun LH, Jian LC (1989) The cryopreservation of maize (Zea mays L.) calli. Chin Bull Bot 6: 28–30

    Google Scholar 

  • Tal M (1990) Somaclonal variation for salt tolerance. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 11. Somaclonal variation in crop improvement I. Springer, Berlin Heidelberg New York, pp 236–257

    Google Scholar 

  • Talbert LE, Doebley JF, Larson S, Chandler VL (1990) Tripsacum andersoni is a natural hybrid involving Zea and Tripsacum: molecular evidence. Am J Bot 77: 722–726

    CAS  Google Scholar 

  • Tomes DT, Smith OS (1985) The effect of parental genotype on initiation of embryogenic callus from elite maize (Zea mays L.). Theor Appl Genet 70: 505–509

    Google Scholar 

  • Uhlig SJ, Bhat BA (1979) Choice of technique in maize milling. Academic Press. Edinburgh

    Google Scholar 

  • Umbeck PF, Gengenbach BG (1983) Reversion of male-sterile T cytoplasm maize to male fertility in tissue culture. Crop Sci 23: 584–588

    CAS  Google Scholar 

  • Vain P. Yean H, Flament P(1989) Enhancement of production and regeneration of embryogenic type callus in Zea mays L. by AgNO,. Plant Cell Tissue Organ Cult 18: 143 151

    Google Scholar 

  • Vajrabhaya M, Thanapaisal T, Vajrabhaya T (1989) Development of salt tolerant lines of KDML and LPT rice cultivars through tissue culture. Plant Cell Rep 8: 411–414

    Google Scholar 

  • Vasal SK, Villegas E, Bauer R (1979) Present status of breeding quality protein maize. In: Seed protein improvement in cereals and legumes II. IAEA, Vienna pp 127–150

    Google Scholar 

  • Vasil V, Vasil IK, Lu C (1984) Somatic embyrogenesis in long-term callus cultures of Zea mays L. (Gramineae). Am J Bot 71: 158–161

    Google Scholar 

  • Vasil V, Lu C., Vasil IK (1985) Histology of somatic embryogenesis in cultured immature embryos of maize (Zea mays L.) Protoplasma 127: 1–8

    Google Scholar 

  • Walters DA, Vetsch CS, Potts DE, Lundquist RC (1992) Transformation and inheritance of a hygromycin phosphotransferase gene in maize plants. Plant Mol Biol 18: 189–200

    CAS  Google Scholar 

  • Wang TB, Niizeki M, Harada T, Ishikawa R, Qian YQ, Saito K (1983) Establishment of somatic hybrid cell lines between Zea mays L. (maize) and Triticum sect, trititrigia Mackey (trititrigia). Theor Appl Genet 86: 371–376

    Google Scholar 

  • Waston SA (1987) Structure and composition. In: Watson SA, Ramstad PE (eds) Com, chemistry and technology: AACC, St Paul, pp 53–82

    Google Scholar 

  • Wilkes HG (1977) Hybridization of maize and teosinte in Mexico and Guatemala and the improvement of maize. Econ Bot 31: 254–293

    Google Scholar 

  • Wright KN (1987) Nutritional properties and feeding value of corn and its by-products. In: Watson SA, Ramstad PE (eds) Corn, chemistry and technology. AACC, St Paul, pp 447–478

    Google Scholar 

  • Zehr BE, Williams ME, Duncan DR, Widholm JM (1987) Somaclonal variation in the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Can J Bot 65: 491–499

    Google Scholar 

  • Zenkteler M, Nitzche W (1984) Wide hybridization experiments in cereals. Theor Appl Genet 68: 311–315

    Google Scholar 

  • Zhang SB, Jian LC, Kuo CS, Qu GP, Qian YQ (1990) Buds and roots differentiation of maize (Zea mays L.) protoplasts after cryopreservation. Acta Biol Exp Sin 23: 117–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, Y.P.S. (1994). Biotechnology in Maize Improvement. In: Bajaj, Y.P.S. (eds) Maize. Biotechnology in Agriculture and Forestry, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57968-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57968-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63419-2

  • Online ISBN: 978-3-642-57968-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics