Skip to main content

Amphibian Feeding Behavior: Comparative Biomechanics and Evolution

  • Chapter
Biomechanics of Feeding in Vertebrates

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 18))

Abstract

The clade Amphibia is critical for our understanding of vertebrate evolution. Because of their position as a basal lineage of tetrapods, nearly all aspects of amphibian biology are of special interest to those interested in the origin of terrestrial life and in the morphological, physiological, ecological, and behavioral changes involved in aquatic to terrestrial transitions. In addition, amphibian taxa illustrate with particular clarity the phenomenon of metamorphosis, allowing the experimental study of aquatic-to-terrestrial transitions on a single individual during ontogeny. Although phylogenetic relationships among the three extant amphibian clades (and among fossil amphibian taxa) are still a matter of debate (Bolt 1977; Carroll and Holmes 1980; Duellman and Trueb 1986; Trueb and Cloutier 1991), the relevance of amphibian clades to problems in vertebrate biology is not at issue. Extant amphibian lineages, because of their phylogenetic position near the base of the tetrapod radiation and because of the mosaic nature of character distribution in these taxa (many amphibian taxa retain large numbers of primitive features in the musculoskeletal system, while at the same time displaying numerous derived characteristics), are prime candidates for comparisons to both fish and amniote clades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson CW (1990) The effect of prey size on feeding kinematics in two species of ranid frogs. Am Zool 30: 140A

    Google Scholar 

  • Bemis WE (1987) Feeding systems of living Dipnoi: anatomy and function. J Morphol Suppl 1: 249–275

    Google Scholar 

  • Bemis WE, Lauder GV (1986) Morphology and function of the feeding apparatus of the lungfish, Lepidosiren paradoxa (Dipnoi). J Morphol 187: 81–108

    Article  PubMed  CAS  Google Scholar 

  • Bemis WE, Schwenk K, Wake MH (1983) Morphology and function of the feeding apparatus in Dermophis mexicanus (Amphibia: Gymnophiona). Zool J Linn Soc Lond 77: 75–96

    Article  Google Scholar 

  • Bold JR (1977) Dissorophoid relationships and ontogeny, and the origin of the Lissamphibia. J Paleontol 51: 235–249

    Google Scholar 

  • Bramble DM, Wake DB (1985) The feeding mechanisms of lower tetrapods. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Havard Univ Press, Cambridge, pp 230–261

    Google Scholar 

  • Carroll RL, Holmes R (1980) The skull and jaw musculature as guides to the ancestry of salamanders. Zool J Linn Soc Lond 68: 1–40

    Article  Google Scholar 

  • Comer C, Grobstein P (1978) Prey acquisition in atectal frogs. Brain Res 153: 217–221

    Article  PubMed  CAS  Google Scholar 

  • Comer C, Grobstein P (1981) Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J Comp Physiol A 142: 141–150

    Article  Google Scholar 

  • Crompton AW (1989) The evolution of mammalian mastication. In: Wake DB, Roth G (eds) Complex organismal functions: integration and evolution in vertebrates. Wiley, London, pp 23–40

    Google Scholar 

  • Cundall D, Lorenz-Elwood J, Groves JD (1987) Asymmetric suction feeding in primitive salamanders. Experientia 43: 1229–1231

    Article  Google Scholar 

  • Deban SM, Nishikawa K (1990) The mechanism of tongue protrusion in Hyla cineria and its evolutionary implications. Am Zool 30: 141A

    Google Scholar 

  • De Jongh HJ (1968) Functional morphology of the jaw apparatus of larval and metamorphosing Rana temporaria L. Neth J Zool 18: 1–103

    Article  Google Scholar 

  • Druner L (1902) Studien zur Anatomie der Zungenbein-, Kiemenbogen-, und Kehlkopfmuskelen der Urodelen, I Theil. Zool Jahrb Anat 15: 435–622

    Google Scholar 

  • Druner L (1904) Studien zur Anatomie der Zungenbein-, Kiemenbogen-, und Kehlkopfmuskelen der Urodelen, II Theil. Zool Jahrb Anat 19: 361–690

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw Hill, New York

    Google Scholar 

  • Edgeworth FH (1935) The cranial muscles of vertebrates. Cambridge Univ Press, Cambridge Emerson S (1976) A preliminary report on the superficial throat musculature of the Microhylidae and its possible role in tongue action. Copeia 1976: 546–551

    Google Scholar 

  • Emerson S (1977) Movement of the hyoid in frogs during feeding. Am J Anat 149: 115–120

    Article  PubMed  CAS  Google Scholar 

  • Erdman S, Cundall D (1984) The feeding apparatus of the salamander Amphiuma tridactylum: morphology and behavior. J Morphol 181: 175–204

    Article  Google Scholar 

  • Ewert JP (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic system. Plenum Press, New York, pp 247-416

    Google Scholar 

  • Findeis EK, Bemis WE (1990) Functional morphology of tongue projection in Taricha torosa (Urodela: Salamandridae). Zool J Linn Soc Lond 99: 129–157

    Article  Google Scholar 

  • Francis ETB (1934) The anatomy of the salamander. Oxford Univ Press, London

    Google Scholar 

  • Gans C (1980) Biomechanics: an approach to vertebrate biology. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Gans C, Gorniak GC (1982a) Functional morphology of lingual protrusion in marine toads (Bufo marinus). Am J Anat 163: 195–222

    Article  PubMed  CAS  Google Scholar 

  • Gans C, Gorniak GC (1982b) How does the toad flip its tongue? Test of two hypotheses. Science 216: 1335–1337

    Article  PubMed  CAS  Google Scholar 

  • Grobstein P, Reyes A, Zwanziger L, Kostyk SK (1985) Prey orienting in frogs: accounting for variations in output with stimulus distance. J Comp Physiol A 156: 775–785

    Article  Google Scholar 

  • Horton P (1982) Diversity and systematic significance of anuran tongue musculature. Copeia 1982: 595–602

    Article  Google Scholar 

  • Ingle D (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain Behav Evol 1: 500–518

    Article  Google Scholar 

  • Larsen JH, Beneski JT, Wake DB (1989) Hyolingual feeding systems of the Plethodontidae: comparative kinematics of prey capture by salamanders with free and attached tongues. J Exp Zool 252: 25–33

    Article  Google Scholar 

  • Lauder GV (1979) Feeding mechanisms in primitive teleosts and in the halecomorph fish Amia calva. J Zool (Lond) 187: 543–578

    Article  Google Scholar 

  • Lauder GV (1980a) The role of the hyoid apparatus in the feeding mechanism of the living coelacanth, Latimeria chalumnae. Copeia 1980: 1–9

    Article  Google Scholar 

  • Lauder GV (1980b) Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163: 283–317

    Article  Google Scholar 

  • Lauder GV (1980c) The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J Exp Biol 88: 49–72

    Google Scholar 

  • Lauder GV (1980d) Hydrodynamics of prey capture in teleost fishes. In: Schenck D (ed) Biofluid mechanics, vol 2. Plenum Press, New York, pp 161–181

    Chapter  Google Scholar 

  • Lauder GV (1983a) Prey capture hydrodynamics in fishes: experimental tests of two models. J Exp Biol 104: 1–13

    Google Scholar 

  • Lauder GV (1983b) Food capture. In: Webb PW, Weihs D (eds) Fish biomechanics. Praeger, New York, pp 280–311

    Google Scholar 

  • Lauder GV (1985a) Aquatic feeding in lower vertebrates. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Harvard University Press, Cambridge, pp 210–229

    Google Scholar 

  • Lauder GV (1985b) Functional morphology of the feeding mechanism in lower vertebrates. In: Duncker H-R, Fleischer G (eds) Functional morphology of vertebrates. Springer, Berlin Heidelberg New York, pp 179–188

    Google Scholar 

  • Lauder GV (1986a) Aquatic prey capture in fishes: experimental and theoretical approaches. J Exp Biol 125: 411–416

    Google Scholar 

  • Lauder GV (1986b) Homology, analogy, and the evolution of behavior. In: Nitecki M, Kitchell J (eds) The evolution of behavior. Oxford University Press, Oxford, pp 9–40

    Google Scholar 

  • Lauder GV (1990) Functional morphology and systematics: studying functional patterns in an historical context. Annu Rev Ecol Syst 21: 317–340

    Article  Google Scholar 

  • Lauder GV (1991) Biomechanics and evolution: integrating physical and historical biology in the study of complex systems. In: Rayner JMV, Wooton RJ (eds) Biomechanics in evolution. Cambridge Univ Press, Cambridge, pp 1–19

    Google Scholar 

  • Lauder GV, Prendergast T (1992) Kinematics of aquatic prey capture in the snapping turtle, Chelydra serpentina. J Exp Biol 164: 55–78

    Article  Google Scholar 

  • Lauder GV, Reilly SM (1988) Functional design of the feeding mechanism in salamanders: causal bases of ontogenetic changes in function. J Exp Biol 134: 219–233

    Google Scholar 

  • Lauder GV, Reilly SM (1990) Metamorphosis of the feeding mechanism in tiger salamanders (Ambystoma tigrinum): the ontogeny of cranial muscle mass. J Zool (Lond) 222: 59–74

    Article  Google Scholar 

  • Lauder GV, Shaffer HB (1985) Functional morphology of the feeding mechanism in aquatic ambystomatid salamanders. J Morphol 185: 297–326

    Article  PubMed  CAS  Google Scholar 

  • Lauder GV, Shaffer HB (1986) Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. Zool J Linn Soc 88: 277–290

    Article  Google Scholar 

  • Lauder GV, Shaffer HB (1988) The ontogeny of functional design in the tiger salamander Ambystoma tigrinum: are motor patterns conserved during major morphological transformations? J Morphol 197: 249–268

    Article  Google Scholar 

  • Lauder GV, Shaffer HB (1993) Design of the aquatic vertebrate skull: major patterns and their evolutionary interpretations. In: Hanken J, Hall B (eds) The vertebrate skull. University of Chicago Press, Chicago Vol. 3, pp 113–149

    Google Scholar 

  • Liem KF (1970) Comparative functional anatomy of the Nandidae (Pisces: Teleostei). Fieldiana Zool 56: 1–166

    Google Scholar 

  • Liem KF (1980) Acquisition of energy by teleosts: adaptive mechanisms and evolutionary patterns. In: Ali MA (ed) Environmental physiology of fishes. Plenum Press, New York

    Google Scholar 

  • Lombard RE, Wake DB (1976) Tongue evolution in the lungless salamanders, family Plethodontidae. I. Introduction, theory and a general model of dynamics. J Morphol 148: 265–286

    Article  PubMed  CAS  Google Scholar 

  • Lombard RE, Wake DB (1977) Tongue evolution in the lungless salamanders, family Plethodontidae. II. Function and evolutionary diversity. J Morphol 153: 39–80

    Article  PubMed  CAS  Google Scholar 

  • Matsushima T, Satou M, Ueda K (1985) An electromyographic analysis of electrically-evoked prey-catching behavior by means of stimuli applied to the optic tectum in the Japanese toad. Neurosci Res 3: 154–161

    Article  PubMed  CAS  Google Scholar 

  • Miller BT, Larsen JH (1990) Comparative kinematics of terrestrial prey capture in salamanders and newts (Amphibia: Urodela: Salamandridae). J Exp Zool 256: 135–153

    Article  Google Scholar 

  • Nishikawa K, Cannatella DC (1991) Kinematics of prey capture in the tailed frog, Ascaphus truei (Anura Ascaphidae). Zool J Linn Soc Lond 103: 289–307

    Article  Google Scholar 

  • Nishikawa K, Gans C (1990) Neuromuscular control of prey capture in the marine toad, Bufo marinus. Am Zool 30: 141A

    Google Scholar 

  • Nishikawa K, Roth G (1991) The mechanism of tongue protraction during prey capture in the frog, Discoglossus pictus. J Exp Biol 159: 217–234

    Google Scholar 

  • Nishikawa K, O’Reilly JC, Cannatella DC (1991) Biomechanical and behavioral transitions in the evolution of frog feeding. Am Zool 31(5): 52A

    Google Scholar 

  • Nussbaum RA (1983) The evolution of a unique dual jaw-closing mechanism in caecilians (Amphibia: Gymnophiona) and its bearing on caecilian ancestry. J Zool (Lond) 199: 545–554

    Article  Google Scholar 

  • O’Reilly JC (1990) Aquatic and terrestrial feeding in caecilians (Amphibia: Gymnophiona): a possible example of phylogenetic constraint. Am Zool 30: 140A

    Google Scholar 

  • O’Reilly JC, Deban SM (1990) The evolution of aquatic prey capture in amphibians: phylogenetic constraints and exaptations. Am Zool 31(5): 17A

    Google Scholar 

  • Regal PJ (1966) Feeding specializations and the classification of terrestrial salamanders. Evolution 20: 392–407

    Article  Google Scholar 

  • Regal PJ, Gans C (1976) Functional aspects of the evolution of frog tongues. Evolution 30: 718–734

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1988a) Ontogeny of aquatic feeding performance in the eastern newt Notophthalmus viridescens (Salamandridae). Copeia 1988: 87–91

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1988b) Atavisms and the homology of hyobranchial elements in lower vertebrates. J Morphol 195: 237–245

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1989a) Kinetics of tongue projection in Ambystoma tigrinum: quantitative kinematics, muscle function and evolutionary hypotheses. J Morphol 199: 223–243

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1989b) Physiological bases of feeding behavior in salamanders: do motor patterns vary with prey type? J Exp Biol 141: 343–358

    Google Scholar 

  • Reilly SM, Lauder GV (1990a) The evolution of tetrapod feeding behavior: kinematic homologies in prey transport. Evolution 44: 1542–1557

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1990b) The strike of the tiger salamander: quantitative electromyography and muscle function during prey capture. J Comp Physiol A 167: 827–839

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1990c) Metamorphosis of cranial design in tiger salamanders (Ambystoma tigrinum): a morphometric analysis of ontogenetic change. J Morphol 204: 121–137

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1991a) Experimental morphology of the feeding mechanism in salamanders. J Morphol 210: 33–44

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1991b) Prey transport in the tiger salamander (Ambystoma tigrinum): quantitative electromyography and muscle function in tetrapods. J Exp Zool 260: 1–17

    Article  Google Scholar 

  • Reilly SM, Lauder GV (1992) Morphology, behavior and evolution: comparative kinematics of aquatic feeding in salamanders. Brain Behav Evol 40: 182–196

    Article  PubMed  CAS  Google Scholar 

  • Roth G (1976) Experimental analysis of the prey catching behavior of Hydromantes italicus Dunn (Amphibia, Plethodontidae). J Comp Physiol 109: 47–58

    Article  Google Scholar 

  • Roth G (1978) The role of stimulus movement patterns in the prey catching behavior of Hydromantes genei (Amphibian, Plethodontidae). J Comp Physiol A 123: 261–264

    Article  Google Scholar 

  • Roth G (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Exp Brain Res 45: 386–392

    Article  PubMed  CAS  Google Scholar 

  • Roth G, Nishikawa K, Wake DB, Dicke U, Matsushima T (1990) Mechanics and neuromorphology of feeding in amphibians. Neth J Zool 40: 115–135

    Article  Google Scholar 

  • Ruibal R, Thomas E (1988) The obligate carnivorous larvae of the frog, Lepidobatrachus laevis (Leptodactylidae). Copeia 1988: 591–604

    Article  Google Scholar 

  • Schwenk K, Throckmorton GS (1989) Functional and evolutionary morphology of lingual feeding in squamate reptiles: phylogenetics and kinematics. J Zool (Lond) 219: 153–176

    Article  Google Scholar 

  • Schwenk K, Wake DB (1988) Medium-independent feeding in a plethodontid salamander: tongue projection and prey capture under water. Am Zool 28: 115A

    Google Scholar 

  • Severtsov AS (1971) The mechanism of food capture in tailed amphibians. Dokl Biol 197: 185–187

    Google Scholar 

  • Shaffer HB, Lauder GV (1985a) Patterns of variation in aquatic ambystomatid salamanders: kinematics of the feeding mechanism. Evolution 39: 83–92

    Article  Google Scholar 

  • Shaffer HB, Lauder GV (1985b) Aquatic prey capture in ambystomatid salamanders: patterns of variation in muscle activity. J Morphol 183: 273–284

    Article  PubMed  CAS  Google Scholar 

  • Shaffer HB, Lauder GV (1988) The ontogeny of functional design: metamorphosis of feeding behavior in the tiger salamander (Ambystoma tigrinum). J Zool (Lond) 216: 437–454

    Article  Google Scholar 

  • Smith SR, Nishikawa KC (1991) The mechanism of tongue protrusion in the spade foot toad Spea multiplicatus. Am Zool 31(5): 52A

    Google Scholar 

  • Thexton AJ, Wake DB, Wake MH (1977) Tongue function in the salamander Bolitoglossa occidentalis. Arch Oral Biol 22: 361–366

    Article  PubMed  CAS  Google Scholar 

  • Trueb L (1973) Bones, frogs, and evolution. In: Vial J (ed) The evolutionary biology of the Anura. Univ of Missouri Press Columbus, pp 65–132

    Google Scholar 

  • Trueb L, Cloutier R (1991) A phylogenetic investigation of the inter-and intra-relationships of the Lisamphibia (Amphibia: Temnospondyli). In: Schultze H-P. Trueb L (eds) Origins of the higher groups of tetrapods: controversy and consequences. Cornell Univ Press, Ithaca, pp 223–313

    Google Scholar 

  • Trueb L, Gans C (1983) Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae). J Zool (Lond) 199: 189–208

    Article  Google Scholar 

  • Wassersug RJ, Hoff K (1979) A comparative study of the buccal pumping mechanism of tadpoles. Biol J Linn Soc 12: 225–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lauder, G.V., Reilly, S.M. (1994). Amphibian Feeding Behavior: Comparative Biomechanics and Evolution. In: Bels, V.L., Chardon, M., Vandewalle, P. (eds) Biomechanics of Feeding in Vertebrates. Advances in Comparative and Environmental Physiology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57906-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57906-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63399-7

  • Online ISBN: 978-3-642-57906-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics