Skip to main content
  • 415 Accesses

Zusammenfassung

Neben den in den vorausgegangenen Kapiteln näher beschriebenen Stoffen sind für sehr spezielle Zwecke weitere Konservierungsstoffe im Gebrauch. Andere wurden (oder werden immer noch) in Einzelfällen illegal benutzt, wurden früher verwendet und sind aus toxikologischen Gründen nicht mehr tragbar. Weitere werden neuerdings ausführlicher diskutiert und könnten vielleicht in Zukunft an Bedeutung gewinnen. Alle Stoffgruppen sollen der Vollständigkeit halber in diesem Kapitel kurz dargestellt werden, das sich in seiner Systematik an die des Gesamtwerkes anlehnt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 229.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Angehrn M (1985) Einsatz von Silber in der mikrobiologischen Wasseraufbereitung. Brauind 70, 33–37.

    Google Scholar 

  • Antelman M (1994) Silver (II, III) disinfectants. Soap Cosmet Chem Spec 3, 52–59.

    Google Scholar 

  • Bragg P, Rainnie D (1973) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20, 833–889.

    Google Scholar 

  • Bg (1962) Hahnemann — Entdecker der oligodynamischen Wirkung von Silber, Dtsch Lebensm Rundsch 58, 73.

    Google Scholar 

  • Miethke H, Brösamle O (1962) Bestimmung von Silber in alkoholfreien Getränken. Dtsch Lebensm Rundsch 58, 71–73.

    CAS  Google Scholar 

  • Nägeli C von (1893) Ueber oligodynamische Erscheinungen in lebenden Zellen. Neue Denkschr Allg Schweiz Ges Gesamte Naturwissenschaften 33, 2. Folge, 1–51.

    Google Scholar 

  • Schreurs W, Rosenberg H (1982) Effect of silver ions on transport retention of phosphate by E. coli. J Bacteriol 152, 7–13.

    CAS  Google Scholar 

  • Woodward RL (1963) Review of the bactericidal effectiveness of silver. J Am Water Works Assoc 55, 881–886.

    Google Scholar 

  • Wuhrmann K, Zobrist F (1958) Untersuchungen über die bakterizide Wirkung von Silber in Wasser. Schweiz Z Hydrol 20, 218–254.

    CAS  Google Scholar 

Literatur

  • Behre A (1930) Technische Hilfsmittel bei der Herstellung von Lebensmitteln. I. Konser vierungsmittel. Chem.-Ztg 54, 325-327 und 346–347.

    Google Scholar 

  • Behre A (1952) Grundsätzliches zur Konservierungsmittelgesetzgebung. Dtsch Lebensm Rundsch 48, 10–15.

    Google Scholar 

  • Lutz O (1991) Nachweis von Borsäureestern in Wein durch 11B NMR. Naturwiss 78, 67–69.

    Article  CAS  Google Scholar 

  • Meindel J, Price C, Field E, Marr M, Myers C, Morrissey R, Schuetz B (1992) Development toxicity of boric acid in mice and rats. Fundam Appl Toxicol 18, 266–277.

    Article  Google Scholar 

  • Pfeiffer CC, Hallman LF, Gersh I (1945) Boric acid ointment, a study of possible intoxication in the treatment of burns. J Amer Med Assoc 128, 266–273.

    Article  CAS  Google Scholar 

  • Price C, Field E, Marr M, Myers C (1990) Final report on the developmental toxicity of boric acid in Sprague Dawley rats. Natl Toxicol Program Report NTP 90–155.

    Google Scholar 

  • Reith JF, Genderen H van (1956) De toelaatbaarheid von boorzuur als conserveermiddel in levensmiddelen. Conserva 4,326–331.

    CAS  Google Scholar 

  • SCF (1990) Berichte des Wissenschaftlichen Lebensmittelausschusses. 26. Folge EUR 13913 DE.

    Google Scholar 

  • Schelhorn N von (1952) Untersuchungen über Konservierungsmittel. VIII. Wirksamkeit der Borsäure als Konservierungsmittel. Dtsch Lebensm Rundsch 48,102.

    Google Scholar 

  • Siti-Mizura S, Tee E, Ooi H (1991) Determination of boric acid in foods. Comparative study of three methods. J Sci Food Agric 55, 261–268.

    Article  CAS  Google Scholar 

  • Smyth HF, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS (1969) Range-finding toxicity data.: List VII. Am Ind Hyg Assoc J 30, 470–476.

    CAS  Google Scholar 

Literatur

  • Battaglia R, Mitiska J (1986) Specific detection an determination of azide in wine. Z Lebensm Unters Forsch 182, 501–502.

    Article  CAS  Google Scholar 

  • Classen H-G, Elias PS, Hammes WP (1987) Toxikologisch-hygienische Beurteilung von Lebens mittelinhalts-und-Zusatzstoffen sowie bedenklicher Verunreinigungen. Berlin Parey, S 108.

    Google Scholar 

  • Dotson S, Somers D (1989) Differential metabolism of sodium azide in maize callus and germinating embryos. Mutat Res 213, 157–163.

    Article  CAS  Google Scholar 

Literatur

  • Ellinger RH (1972) Phosphates as food indigridients. Cleveland: CRS Press, S 19–25.

    Google Scholar 

  • Hargreaves LL, Wood JM, Jarvis B (1972) The antimicrobial effect of phosphates with par ticular reference to food products. The British Food Manufacturing Industries Research Association. Scientific and Technical Surveys. No 76. Leatherhead B.F.M.I.R.A.

    Google Scholar 

  • Kelch F, Bühlmann X (1958) Der Einfluß handelsüblicher Phosphate auf das Wachstum von Mikroorganismen. Fleischwirtschaft 38, 325–328.

    Google Scholar 

  • Kim J-W, Slavik M (1994) Trisodium phosphate (TSP) treatment of beef surfaces to reduce Escherichia coli O 157:H7 and Salmonella typhimurium. J Food Sci 59, 20–24.

    Article  CAS  Google Scholar 

  • Lee R, Hartman R, Stahr M, Olson D, Williams F (1994) Antimicrobial mechanism of longchained phosphates in Staphylococcus aureus. J Food Protect 57, 465–469.

    Google Scholar 

  • Lillard H (1994) Effect of trisodium phosphate on salmonellae attached to chicken skin. J Food Protect 57, 465–469.

    CAS  Google Scholar 

  • Morgan J (1864) On a new process of preserving meat. J Soc Arts 12, 347–363.

    Google Scholar 

  • Post FJ, Krishanmurty GB, Flanagan MD (1963) Influence of sodium hexametaphosphate on selected bacteria. Appl Microbiol 11, 430–435.

    CAS  Google Scholar 

  • Tompkin RB (1983) Indirect antimicorbial effects in foods: Phosphates. J Food Safety 6, 13–27.

    Article  Google Scholar 

Literatur

  • Amin VM, Olson NF (1967) Factors affecting the resistance of Staphylococcus aureus to hydrogen peroxide treatments in milk. Appl Microbiol 15, 97–101.

    CAS  Google Scholar 

  • Budde CCLG (1904) Ein neues Verfahren zur Sterilisierung der Milch. Tuberculosis 3, 94–98.

    Google Scholar 

  • Coles T (1995) Sterility with peroxide. Manufact Chem März 1995, 27–29.

    Google Scholar 

  • Eapen KC, Mattada RR, Sharma TR, Nath H (1975) Keeping quality of fresh milk with hydro gen peroxide as a preservative. J Food Sci Technol 12, 87–90.

    CAS  Google Scholar 

  • Kawasaki C, Nagano H, Kono K (1970) Sterilizing effect of hydrogen peroxide in food. Shokuhin Eiseigaku Zasshi 11, 139–142.

    Article  CAS  Google Scholar 

  • Özdemir S, Kurt A (1994) Preservation of ewe milk at room and refrigeration temperature by adding hydrogen peroxide and potassium sorbate. Tr J Agric Forestry 18, 219–224.

    Google Scholar 

  • Rosell JM (1957) Die Peroxydkatalase-Behandlung der Milch. Milchwissenschaft 12, 343–348.

    CAS  Google Scholar 

  • Roundy ZD (1958) Treatment of milk for cheese with hydrogen peroxide. J Dairy Sci 41, 1460–1465.

    Article  CAS  Google Scholar 

  • Shin S, Calvisi E, Beamcin T, Pankratz H, Gerhardt P, Marquis R (1994) Microscopic and ther mal characterization of hydrogen peroxide killing and lysin of spores and protection by transition metal ions, chelators and antjoxidants. Appl Environm Microbiol 60, 3192–3197.

    CAS  Google Scholar 

  • Toledo RT, Escher FE, Ayres JC (1973) Sporicidal properties of hydrogen peroxide against food spoilage organisms. Appl Microbiol 26, 592–597.

    CAS  Google Scholar 

Literatur

  • Smyth HF, Carpenter CP, Weil CS, Pozzani UC, Striegel JA, Nycum JS (1969) Range-finding toxicity data: List VII. Am Ind Hyg Assoc J 30, 470–476.

    CAS  Google Scholar 

Literatur

  • Ballmeier D, Epe B (1995) Oxidative DNA damage induced by potassium bromate under cellfree conditions and in mammalian cells. Carcinogenesis 16, 335–342.

    Article  Google Scholar 

Literatur

  • Alguire DE (1976) Regulation of ethylene oxide and propylene oxide in food processing and packaging applications. Food Prod Dev 10:1, 52–53.

    Google Scholar 

  • Anon. (1978) Ethylene oxide, ethylene chlorohydrin, and ethylene glycol. Proposed maximum residue limits and maximum levels of exposure. Federal Register 43, 27474-27483.

    Google Scholar 

  • Bruch CW (1961) Gaseous sterilization. Ann Rev Microbiol 15, 245–262.

    Article  CAS  Google Scholar 

  • Bruch CW (1973) Sterilization of plastics: Toxicity of ethylene oxide. In: Briggs Philipps G, Miller WS: Industrial Sterilization. Durham: Duke University Press, S 49–77.

    Google Scholar 

  • Bruhin H, Bühlmann X, Vischer WA, Lammers T (1961) Sterilisation mit Äthylenoxid unter besonderer Berücksichtigung der Anwendung bei Kunststoffen. Schweiz Med Wochenschr 91, 607-613 und 635–639.

    Google Scholar 

  • Chaigneau M (1977) Stérilisation et désinfection par les gaz. Sainte-Ruffine: Maisonneuve, S 23–107.

    Google Scholar 

  • Driessen FM, Duin H van (1975) Steriliseren met ethyleenoxyde. Voedingsmiddelentechnol 8, 15-19 und 32–33.

    Google Scholar 

  • Gerhardt H, Ladd Effio JC (1982) Äthylenoxidanwendung in der Lebensmittelindustrie. Ein Situationsbericht über „Für und Wider“. Fleischwirtschaft 62, 1129–1134.

    CAS  Google Scholar 

  • Gross MP, Dixon LF (Liggett & Meyers Tobacco Company, New York) (1933) Method of Steril izing. U.S. Patent 2075845.

    Google Scholar 

  • Hoffmann RK (1971) Toxic gases. Ethylene oxide. In: Hugo WB: Inhibition and destruction of the microbial cell. London — New York: Academic Press, S 226–236.

    Google Scholar 

  • Hogstedt C, Malmqvist N, Wadman B (1979) Leukemia in workers exposed to ethylene oxide. J Am med Assoc 241, 1132–1133.

    Article  CAS  Google Scholar 

  • Lammers T, Gewalt R (1958) Ein neues Sterilisationsverfahren mit gespanntem Aethylenoxyd. Z Hyg 144, 350–358.

    Article  CAS  Google Scholar 

  • Pfeilsticker K, Fabricius G, Timme G (1975) Simultane, gaschromatographische Bestimmung von Ähtylenoxid, Äthylenchlorhydrin und Äthylenglykol in Getreide. Z Lebensm Unters Forsch 158, 21–25.

    Article  CAS  Google Scholar 

  • Phillips CR (1952) Relative resistance of bacterial spores and vegetative bacteria to dis infectants. Bacteriol Rev 16, 135–143.

    CAS  Google Scholar 

  • Phillips CR, Kaye S (1949) The sterilizing action of gaseous ethylene oxide. Am J Hyg 50, 270–279.

    CAS  Google Scholar 

  • Steiger E, Tauchnitz H-D, Löbel A (1974) Über die Resistenz von Pilzen gegenüber Äthylen oxid. Z Gesamte Hyg Ihre Grenzgeb 20, 120–123.

    CAS  Google Scholar 

  • Toledo RT (1975) Chemical Sterilants for Aseptic Packaging. Food Technol 29: 5, 102–112.

    CAS  Google Scholar 

Literatur

  • Davies R, Birch GG, Parker KJ (1976) Intermediate moisture foods. London: Applied Science Publishers, S 268–269.

    Google Scholar 

  • Inforamtics, Inc. (1973) GRAS (Generally Recognized as Safe) food ingredients — Propylene glycol and derivatives PB-221 233. Springfield: National Technical Information Service, US Department of Commerce.

    Google Scholar 

Literatur

  • Anon. (1964) Give a dog a bad name… Food Cosmet Toxicol 2, 745-749.

    Google Scholar 

  • Bremanis E (1949) Die photometrische Bestimmung des Formaldehyds mit Chromotropsäure. Z Anal Chem 130, 44–47.

    Article  CAS  Google Scholar 

  • Brendel R (1964) Untersuchungen an Ratten zur Verträglichkeit von Hexamethylentetramin. Arzneim Forsch 14, 51–53.

    CAS  Google Scholar 

  • Delia Porta G, Colnaghi MI, Parmiani G (1968) Non-carcinogenicity of hexamethylentetramine in mice and rats. Food Cosmet Toxicol 6, 707–715.

    Article  Google Scholar 

  • Englesberg E (1952) The mutagenic action of formaldehyde on bacteria. J Bacteriol 63, 1–11.

    CAS  Google Scholar 

  • Hurni H, Ohder H (1973) Reproduction study with formaldehyde and hexamethylenetetramine in beagle dogs. Food Cosmet Toxicol 11, 459–462.

    Article  CAS  Google Scholar 

  • Lang K, Frimmer M, Bernert D (1951) Stoffwechselverhalten und Verträglichkeit formylierter und acetylierter Proteine. Z Gesamte Exp Med 117, 288–296.

    Article  CAS  Google Scholar 

  • Linko RR, Nikkilä OE (1959) Chemical preservatives in foodstuffs. III. Hexamethyl enetetramine as mold inhibitor and the antagonistic action of amino acids. Maataloustie-teellinen Aikakauskirja 31, 162–173.

    CAS  Google Scholar 

  • Malorny G, Rietbrock N, Schneider M (1965) Die Oxydation des Formaldehyds zu Ameisen säure im Blut, ein Beitrag zum Stoffwechsel des Formaldehyds. Naunyn-Schmiedebergs Arch Exp Pathol Pharmakol 250, 419–436.

    CAS  Google Scholar 

  • Natvig H, Andersen J, Wulff Rasmussen E (1971) A contribution of the toxicological evaluation of hexamethylenetetramine. Food Cosmet Toxicol 9, 491–500.

    Article  CAS  Google Scholar 

  • Nikkilä OE, Linko RR (1958) Chemical preservatives in foodstuffs. II. The effect on moulds. Maataloustieteellinen Aikakauskirja 30, 125–131.

    Google Scholar 

  • Rapoport IA (1946) Carbonyl compounds and chemical mechanism of mutations Dokl Akad Nauk SSSR 54, 65–67.

    CAS  Google Scholar 

  • Schelhorn M von (1954) Untersuchungen über Konservierungsmittel. IX. Hexamethylente tramin als Konservierungsmittel. Dtsch Lebensm Rundsch 50,90–92.

    Google Scholar 

  • Schmidt-Lorenz W (1958) Zur Verwendbarkeit von Hexamethylentetramin und Formaldehyd als Konservierungsmittel. Z Lebensm Unters Forsch 108, 423–441.

    Article  CAS  Google Scholar 

Literatur

  • Dalgaard-Mikkelsen S, Kvorning SA, Møller KO (1955) Toxic effects of monobromacetic acid on pigs. Acta Pharmacol Toxicol 11, 13–32.

    Article  CAS  Google Scholar 

  • Fuhrmann FA, Field J, Wilson RH, DeEds F (1955) Monochloracetate: Effects of chronic administration to rats on growth, activity, and tissue metabolism and inhibitory effects in vitro compared with monoiodacetate and monobromacetate. Arch Intern Pharmacodyn 102, 113–125.

    Google Scholar 

Literatur

  • Life Science Research Office (1978) Evaluation of the health aspects of lactic acid and calcium lactate as food ingredients. PB-283713. Springfield National Technical Information Service. US Department of Commerce.

    Google Scholar 

  • Shelef L (1994) Antimicrobial effects of lactates: A review. J Food Protect 55, 445–450.

    Google Scholar 

  • Weaver A, Shelef L (1993) Antisterial activity of sodium, potassium and calcium lactate in pork liver sausages. J Food Safety 13,133–146.

    Article  CAS  Google Scholar 

Literatur

  • Kabara JJ (1984) Lauricidin. The nonionic emulsifier with antimicrobial properties. In: Kabara JJ: Cosmetic and drug preservation. Principles and practice. Marcel Dekker, New York, S 305–322.

    Google Scholar 

  • Kabara JJ (1993) Medium-chain fatty acids and esters. In: Davidson PM, Branen AL: Antimicorbials in Foods. Marcel Dekker, New York, S 307–342.

    Google Scholar 

  • Razavi-Rohani SM, Griffiths MW (1994) The effect of mono-and polyglycerol laurate on spoilage and pathogenic bacteria associated with foods. J Food Safety 14, 131–151.

    Article  CAS  Google Scholar 

  • Tetsumoto S (1933) Sterilizing action of acids. II. Sterilizing action of saturated fatty acids. J Agric Chem Soc Japan 9,388.

    CAS  Google Scholar 

Literatur

  • Bulgarelli MA, Shelef LA (1985) Effect of ethylenediaminetetraacetic acid (EDTA) on growth from spores of Bacillus cereus. J Food Sci 50, 661–664.

    Article  CAS  Google Scholar 

Literatur

  • Neudecker T, Henschler D (1985) Allyl isothiocyanate is mutagenic in Salmonella typhimurium. Mutation Res 156, 33–37.

    Article  CAS  Google Scholar 

  • NTP (1982) Technical report on the carcinogenesis bioassay of allyl isothiocyanate (CAS No. 57-06-7) in F 344/N rats and B6C3F1 mice (Gavage Study). NTP-81-38. NIH Publication No. 83-1790. US Department of Health and Human Services.

    Google Scholar 

  • Krum JK, Felles CR (1952) Clarification of wine by a sequestering agent. Food Technol 6, 103–106.

    CAS  Google Scholar 

  • Levin RE (1967) The effectiveness of EDTA as a fish preservative. J Milk Food Technol 30, 277–283.

    Google Scholar 

  • Russel AD (1971) Ethylenediaminetetra-acetic acid. In: Huge WB: Inhibition and destruction of the microbial cell. London — New York: Academic Press, S 209–224.

    Google Scholar 

Literatur

  • Barman TE, Parke DV, Williams RT (1963) The metabolisms of dehydroacetic acid (DHA). Toxicol Appl Pharmacol 5, 545–568.

    Article  CAS  Google Scholar 

  • Brodersen R, Kjaer A (1946) The antibacterial action and toxicity of some unsaturated lactones. Acta Pharmacol 2, 109–120.

    Article  Google Scholar 

  • Khan S, Murawski M, Sherman J (1994) Quantitative HPTLC determination of organic acid preservatives in beverages. J Liq Chrom 17, 855–865.

    Article  CAS  Google Scholar 

  • Ritschel WA (1965) Zur Verträglichkeit der Dehydracetsäure. Arzneim Forsch 15, 220–222.

    CAS  Google Scholar 

  • Schelhorn M von (1952) Die Dehydracetsäure als Konservierungsmittel für Lebensmittel. Dtsch Lebensm Rundsch 48, 16–18.

    Google Scholar 

  • Seevers MH, Shideman FE, Woods LA, Weeks JR, Kruse WT (1950) Dehydroacetic Acid (DHA). II. General pharmacology and mechanism of action. J Pharmacol Exp Ther 99, 69–83.

    CAS  Google Scholar 

  • Shideman FE, Woods LA, Seevers MH (1950) Dehydroacetic acid (DHA). IV. Detoxication and effects on renal function. J Pharmacol Exp Ther 99, 98–111.

    CAS  Google Scholar 

  • Spencer HC, Rowe VK, McCollister DD (1950) Dehydroacetic acid (DHA). I. Acute and chronic toxicity. J Pharmacol Exp Ther 99, 57–68.

    CAS  Google Scholar 

  • Wolf PA (1950) Dehydroacetic acid a new microbiological inhibitor. Food Technol 4, 294–297.

    CAS  Google Scholar 

  • Woods LA, Shidemann FE, Seevers MH, Weeks JR, Kruse WT (1950) Dehydroacetic Acid (DHA). III. Estimation, absorption and distribution. J Pharmacol Exp Ther 99, 84–97.

    CAS  Google Scholar 

Literatur

  • Herz A, Stampfl B (1951) Verträglichkeit oft wiederholter kleiner Salicylsäuregaben. Z Gesamte Exp Med 118, 76–90.

    Article  CAS  Google Scholar 

  • Kolbe H (1878) Ist anhaltender Genuß kleiner Mengen Salicylsäure der Gesundheit nachteilig? Z gegen Verfälsch Lebensm u sonst Verbrauchsgegenstände 1, 370–371.

    Google Scholar 

  • Minor JL, Becker BA (1971) A comparision of the teratogenic properties of sodium salicylate, sodium benzoate, and phenol. Toxicol Appl Pharmacol 19, 373.

    Google Scholar 

  • Schelhorn M von (1951) Untersuchungen über Konservierungsmittel. V. Zur Frage des Ver gleichs der Wirksamkeit von Konservierungsmitteln. Dtsch Lebensm Rundsch 47, 16–18.

    Google Scholar 

  • Spector WS (1956) Handbook of toxicology. Band 1. WB Saunders, Philadelphia — London, S 262–263.

    Google Scholar 

  • Wyss O (1948) Microbial inhibition by food preservatives. Adv Food Res 1, 373–393.

    Article  CAS  Google Scholar 

Literatur

  • Flak W, Schaber R (1988) Die Bestimmung von Konservierungsmitteln in Wein und anderen Getränken mittels HPLC. Mitt Klosterneuburg 38, 10–16.

    CAS  Google Scholar 

  • Kieckebusch W, Griem W, Lang K (1960) Die Verträglichkeit der p-Chlorbenzoesäure. Arzneim Forsch 10, 999–1001.

    CAS  Google Scholar 

  • Strahlmann B (1974) Entdeckungsgeschichte antimikrobieller Konservierungsstoffe für Lebensmittel. Mitt Geb Lebensmittelunters Hyg 65, 96–130.

    CAS  Google Scholar 

Literatur

  • Ebringer L, Šubík J, Lahitová N, Trubačik S, Horváthová R, Siekle P, Krajčovič J (1982) Mutagenic effects of two nitrofuran food preservatives. Neoplasma 29, 675–684.

    CAS  Google Scholar 

  • Farkas J (1978) Les agents de stabilisation biologique des vins. Ann Technol Agric 27, 279–288.

    CAS  Google Scholar 

  • Kennard CHL (1976) Another food chemical, AF-2, alpha-2-furyl-5-nitro-2-furanacrylamide. Int Flavours Food Additives 7: 2, 59–60.

    CAS  Google Scholar 

  • Matsuda T (1966) Review on recent nitrofuran derivatives used as food preservatives. J Fermentation Technol 44, 495–508.

    CAS  Google Scholar 

  • Miyaji T (1971a) Acute and chronic toxicity of furylfuramide in rats and mice. Tohoku J Exp Med 103, 331–369.

    Article  CAS  Google Scholar 

  • Miyaji T (1971b) Effect of furylfuramide on reproduction and malformation. Tohoku J Exp Med 103, 381–388.

    Article  CAS  Google Scholar 

  • Nomura T (1975) Carcinogenicity of the food additive furylfuramide in foetal and young mice. Nature 258, 610–611.

    Google Scholar 

  • Park YR, Lee Y, Sung NE (1976) A study on the acute toxicity of AF-2. Han’guk Sikp’um Kwahakhoe Chi 8, 63–60.

    Google Scholar 

  • Scott Foster JH, Russell AD (1971) Antibacterial dyes and nitrofurans. II. Nitrofurans. In: Hugo WB: Inhibition and destruction of the microbial cell. London — New York Academic Press, S 201–204.

    Google Scholar 

  • Tazima Y, Kada T, Mukarami A (1975) Mutagenicity of nitrofuran derivatives, including furyl furamide, a food preservative. Mutat Res 32, 55–80.

    Article  CAS  Google Scholar 

  • Takayama S, Kuwabara N (1977) The production of skeletal muscle atrophy and mammary tumors in rats by feeding 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide. Toxicol Lett 1, 11–16.

    Article  CAS  Google Scholar 

Literatur

  • Goldberg HS (1964) Nonmedical uses of antibiotics. Adv Appl Microbiol 6, 91–117.

    Article  CAS  Google Scholar 

  • Partmann W (1957) Antibiotica in der Lebensmittelkonservierung. Z Lebensm Unters Forsch 106, 210–227.

    Article  CAS  Google Scholar 

  • Shibasaki I (1970) Antibacterial activity of Tylosin on Hiochi-bacteria. J Fermentation Technol 48, 110–115.

    Google Scholar 

  • Suzuki M, Okazaki M, Shibasaki I (1970) Mode of action of Tylosin (I). J Fermentation Technol 48, 525–532.

    Google Scholar 

Literatur

  • Beuchat LR (1976) Sensitivity of Vibrio parahaemolyticus to spices and organic acids. J Food Sci 41, 899–902.

    Article  CAS  Google Scholar 

  • Forstreuter-Künstler M, Ahlert B (1984) Hemmung von Mikroorganismen durch Gewürz inhaltsstoffe. Lebensmittelchem Gerichtl Chem 38, 143–145.

    Google Scholar 

  • Haas GJ, Barsoumian R (1994) Antimicrobial activity of hop resins. J Food Protect 57, 59–61.

    CAS  Google Scholar 

  • Hachitani N, Takisawa Y, Kawamura T, Tateno S, Sakabe H, Asanoma M, Noda M, Ishizaki M, Ishibashi T, Kuroda K L (1985) Acute toxicity of natural food additives and mutagenicity screening. Tokishikoroji Foramu 8, 91–105.

    CAS  Google Scholar 

  • Marth EH (1966) Antibiotics in foods — naturally occuring, developed and added. Residue Rev 12, 65–161.

    CAS  Google Scholar 

Literatur

  • Ashworth D, Turton K (1995) An approach for formulations removing preservatives from con sumer products. Cosmet Toiletr Manufact Worldwide, 81-85.

    Google Scholar 

  • Beuchat LR, Golden DA (1989) Antimicrobials occuring naturally in foods. Food Technol 43, 134–142.

    CAS  Google Scholar 

  • Dobbenie D, Uyttendaele M, Delevere J (1995) Antibacterial activity of the glucose oxidase/glucose system in liquid whole egg. J. Food Protect 58, 273–279.

    CAS  Google Scholar 

  • Reiter B, Harnulv G (1984) Lactoperoxidase antimicrobial system: natural occurence, bio logical functions, and practical applications. J Food Protect 47, 724.

    CAS  Google Scholar 

Literatur

  • Barnby-Smith FM (1992) Bacteriocins: applications in food preservation. Trends in Food Sci Technol 3, 133–137.

    Article  CAS  Google Scholar 

  • Hoover DG, Steenson LR (1993) Bacteriocins of lactic acid bacteria. San Diego Academic Press.

    Google Scholar 

  • Lewus CB, Kaiser A, Montville TJ (1991) Inhibition of food-borne bacterial pathogens by bacteriocins from lactic acid bacteria isolated from meats. Appl Environm Microbiol 57, 1683–1688.

    CAS  Google Scholar 

  • Lücke F-K., Geis A (1992) Bacteriocine. In: Dehne LI, Bögl KW: Die biologische Konser vierung von Lebensmitteln. Ein Statusbericht. SozEp-Heft des Bundesgesundheitsamtes, S 34-45.

    Google Scholar 

  • Okereke A, Montville TJ (1991) Bacteriocin inhibition of Clostridium botulinum spores by lactic acid bacteria. J Food Protect 54, 349–353, 356.

    Google Scholar 

  • Wang June Kim (1993) Bacteriocins of lactic acid bacteria: their potentials as food bio-preservative (review). Food Rev Int 9, 299–313.

    Article  Google Scholar 

Literatur

  • Lücke F-K (1992) Schutzkulturen. In: Dehne LI, Bögl KW: Die biologische Konservierung von Lebensmitteln. Ein Statusbericht. SozEp-Heft 4 des Bundesgesundheitsamtes, S 16-33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lück, E., Jager, M. (1995). Weitere Konservierungsstoffe. In: Chemische Lebensmittelkonservierung. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57868-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57868-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63387-4

  • Online ISBN: 978-3-642-57868-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics