Skip to main content

Genetic Transformation of Dianthus caryophyllus (Carnation)

  • Chapter

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 34))

Abstract

The carnation (Dianthus caryophyllus) is one of the world’s most important cut flowers. Figures from the Dutch flower auctions place carnation behind only rose and chrysanthemum in wholesale value. Carnation production is a very important segment of the horticultural industry in Colombia, Kenya, Israel and Italy as well as a significant, economically important, activity in Holland, France and California. Large-scale propagation and flower production is carried out in many other countries. On a global scale, carnations account for about 9% of all cut flowers traded at the wholesale level and represent a market worth approximately 1.2 billion US dollars per annum (Pertwee 1990).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1992) First carnation with complete Fusarium resistance. Agro-Food-Indust-High-Tech May/June: 48

    Google Scholar 

  • Arthur AE (1981) Finding Fusarium tolerance — the easy part of carnation breeding. Grower 20:32–39

    Google Scholar 

  • Arthur AE (1984) Carnation breeding: scope for the future. Scientia Hortic 35: 78–83

    Google Scholar 

  • Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence. Hortic Rev 11: 15–43

    CAS  Google Scholar 

  • Bossé CA, Staden J van (1989) Cytokinins in cut carnation flowers V. Effect of cytokinin type, concentration and mode of application on flower longevity. J Plant Physiol 135: 155–159

    Article  Google Scholar 

  • Cook EL, Staden J van (1988) The carnation as a model for hormonal studies in flower senescence. Plant Physiol Biochem 26: 793–807

    CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Bot Rev 42: 389–466

    Article  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1: 19–21

    Article  CAS  Google Scholar 

  • Demmink JF (1978) Interspecific crosses in carnation. In:Quagliotti L, Baldi A (eds) Proc Eucarpia Meeting on Carnation and Gerbera held in Alassio, National Research Council, Rome, pp 103–108

    Google Scholar 

  • Firoozabady E, Lemieux CS, Moy YS, Moll B, Nichols JA, Robinson KEP (1991) Genetic engineering of ornamental crops. In Vitro 27: 96A

    Google Scholar 

  • Frey L, Janick J (1991) Organogenesis in carnation. J Am Soc Hortic Sci 116: 1108–1112

    Google Scholar 

  • Frey L, Saranga Y, Janick J (1992) Somatic embryogenesis in carnation. Hortic Sci 27: 63–65

    Google Scholar 

  • Garfinkel DJ, Nester EW (1980) Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J Bacteriol 144: 732–743

    PubMed  CAS  Google Scholar 

  • Gimelli F, Ginatta G, Venturo R, Positano S, Buiatti M (1984) Plantlet regeneration from petals and floral induction in vitro in the mediterranean carnation (Dianthus caryophyllus L.). Riv Ortoflorofrutt It 68: 107–121

    Google Scholar 

  • Griga M, Sladky Z (1982) Regeneration of plantlets from ovules of carnation (Dianthus caryophyllus L.) after placental pollination in vitro. Scr Fac Sci Nat Univ Purkynianae Brun 12: 377–381

    Google Scholar 

  • Hauzinska E (1975) Organogenesis in tissue culture of greenhouse carnation (Dianthus caryophyllus L.) Hodowla Rose Aklim Nasienn 19: 363–376

    CAS  Google Scholar 

  • Hickey M, King C (1981) 100 families of flowering plants. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Holley WD, Baker R (1963) Carnation production: including the history, breeding, culture and marketing of carnations. WC Brown, Dubuque

    Google Scholar 

  • Holton TA, Tanaka Y, Kovacic F, Lester DR, Hyland C, Menting JGT, Gloster S, Michael M, Perilli T, O’Connor E, Nakamura N, Caesar C, Tsuda S, Stevenson TW, Cornish E (1992) Isolation and expression of cytochrome P-450 genes controlling flower colour in Petunia hybrida. In: Book of Abstracts, Int Worksh on Molecular control of flower development and plant reproduction Amsterdam 12–16 April, L21

    Google Scholar 

  • Hutchinson JF, Kaul V, Maheswaran G, Moran JR, Graham MW and Richards D (1992) Genetic improvement of floricultural crops using biotechnology. Aust J Bot 40: 765–805

    Article  CAS  Google Scholar 

  • Ingwersen W (1949) The Dianthus. Collins, London

    Google Scholar 

  • Janssen BJ, Gardner RC (1989) Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72

    Article  Google Scholar 

  • Kakehi M (1979) Studies on the tissue culture of carnation V. Induction of redifferentiated plants from petal tissue. Bull. Hiroshima Agric Coll 6: 150–166

    Google Scholar 

  • Kandreck KA, Black ND (1984) Growing media for ornamental plants and turf. NSW Univ Press, Kensington, p 317

    Google Scholar 

  • Keane AT (1989) Breeding new carnation cultivars. Int Plant Prop Soc Comb Proc 39: 88–89

    Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation — competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9: 963–967

    Article  PubMed  CAS  Google Scholar 

  • Leshem B (1986) Carnation plantlets from vitrified plants as a source of somaclonal variation. Hortic Sci 212: 320–321

    Google Scholar 

  • Linthorst HJM, Loon LC van, Rossum CMA van, Mayer A, Bol JF, Roekel JS van C, Meulenhoff EJS, Cornelissen BJC (1990) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant-Microbe Interact 3: 252–258

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling M (1991) Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.) Bio/Technology 9: 864–868

    Article  CAS  Google Scholar 

  • Martin-Tanguy J, Tepfer D, Burtin D (1991) Effects of Ri TL-DNA from Agrobacterium rhizogenes and the inhibitors of polyamine synthesis on growth, floral development, sexual organogenesis and polyamine metabolism in tobacco. Plant Sci 80: 131–144

    Article  CAS  Google Scholar 

  • McDonnell RE, Clarke RD, Smith LA, Hinchee MA (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol Biol Rep 4: 380–386

    Article  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 667–678

    Article  Google Scholar 

  • Mii M, Buiatti M, Gimelli F (1990) Carnation. In: Ammirato PV, Evans DA, Sharp WR, Bajaj YPS (eds) Handbook of plant cell culture, vol 5. Ornamental species McGraw-Hill, New York, pp 284–318

    Google Scholar 

  • Miller RM, Kaul V, Hutchinson JF, Maheswaran G, Richards D (1991a) Shoot regeneration from fragmented flower buds of carnation (Dianthus caryophyllus.). Ann Bot 68: 563–568

    Google Scholar 

  • Miller RM, Kaul V, Hutchinson JF, Richards D (1991b) Adventitious shoot regeneration in carnation (Dianthus caryophyllus.) from axillary bud expiants. Ann Bot 67: 35–42

    CAS  Google Scholar 

  • Moffat AS (1991) Making sense of antisense. Science 253: 510–511

    Article  PubMed  CAS  Google Scholar 

  • Mol JNM, Stuitje AR, Gerats A, Krol A van der, Jorgensen R (1989) Saying it with genes: molecular flower breeding. Tibtech 7: 148–153

    Article  CAS  Google Scholar 

  • Mugnier J (1988) Establishment of new axenic hairy root lines by inoculation with Agrobacterium rhizogenes. Plant Cell Rep 7: 9–12

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Nakano M, Mii M (1992) Protoplast culture and plant regeneration of several species in the genus Dianthus. Plant Cell Rep 11: 225–228

    Article  CAS  Google Scholar 

  • Nugent G, Wardley-Richardson T, Lu C (1991) Plant regeneration from stem and petal of carnation. (Dianthus caryophyllus L.). Plant Cell Rep 10: 477–480

    Article  CAS  Google Scholar 

  • Pertwee J (1990) Current trends in the international trade, based on the AIPH figures. In: International floriculture papers & statistics. Pathfast, Essex

    Google Scholar 

  • Petru E, Landa Z (1974) Organogenesis in isolated carnation plant callus tissue cultivated in vitro. Biol Plant 16:450–453

    Article  Google Scholar 

  • Robinson KEP, Firoozabady E (1993) Transformation of floriculture crops. Sci Hortic 55: 83–99

    Article  CAS  Google Scholar 

  • Roest S, Bokelmann GS (1981) Vegetative propagation of carnation in vitro through multiple shoot development. Sci Hortic 14: 357–366

    Article  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Stevenson KR, White E, Michael M, Lu C, Chandler SF, Cornish EC (1992) Control of petal senescence in transgenic carnation by expression of antisense ethylene forming enzyme RNA. In: Book of Abstracts, Int Worksh on Molecular control of flower development and plant reproduction, Amsterdam, 12-16 April, P62

    Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Bolter T (1986). Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367

    Article  CAS  Google Scholar 

  • Segers T (1987) The development of interspecific carnation hybrids. Acta Hortic 216: 373–375

    Google Scholar 

  • Simard M, Michaux-Ferriere N, Silvy A (1992) Variants of carnation (Dianthus caryophyllus L.) obtained by organogenesis from irradiated petals. Plant Cell Tissue Organ Cult 29: 37–42

    Article  Google Scholar 

  • Tormala T, Honkanen J, Seppanen P (1992) Potential of biotechnology in floriculture. Agro-Food-Indust High-Tech March/April: 5–8

    Google Scholar 

  • Umiel N, Behan K, Kagan S (1987) Genetic variation in carnation: colour patterns of petals, number of buds and arrangement of flower buds on the stems. Acta Hortic 216: 355–358

    Google Scholar 

  • Van Altvorst AC, Koehorst HJJ, Bruinsma T, Jansen J, Custers JBM, Jong J de, Dons JJM (1992) Adventitious shoot formation from in vitro leaf expiants of carnation (Dianthus caryophyllus L.). Sci Hortic 51: 223–235

    Article  Google Scholar 

  • Van der Krol A, Lenting PE, Veenstra J, Meer IM van der, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An anti-sense chalcone synthase gene in transgenic plants inhibit flower pigmentation. Nature 333: 866–869

    Article  Google Scholar 

  • Villalobos V (1981) Floral differentiation in carnation (Dianthus caryophyllus L.) from anthers cultured in vitro. Phyton 41: 71–75

    Google Scholar 

  • Woodson WR (1991) Biotechnology of floricultural crops. Hortic Sci 26: 1029–1033

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, C., Chandler, S.F. (1995). Genetic Transformation of Dianthus caryophyllus (Carnation). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering VI. Biotechnology in Agriculture and Forestry, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57840-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57840-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63374-4

  • Online ISBN: 978-3-642-57840-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics