Skip to main content

Principles of Sleep Regulation: Implications for the Effect of Hypnotics on Sleep

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 116))

Abstract

Three basic processes underlie sleep regulation: (a) a homeostatic process determined by sleep and waking; (b) a circadian process, a clock-like mechanism defining the alternation of periods with high and low sleep propensity and which is basically independent of sleep and waking; and (c) an ultradian process occurring within sleep and represented by the alternation of the two sleep states, non-REM sleep and REM sleep (Fig. 1). This chapter focuses on sleep homeostasis and on the ultradian dynamics, whereas the circadian aspects are covered in Chap. 3 of this volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achermann P, Borbély AA (1987) Dynamics of EEG slow wave activity during physiological sleep and after administration of benzodiazepine hypnotics. Hum Neurobiol 6:203–210

    PubMed  CAS  Google Scholar 

  • Aeschbach D, Borbély AA (1993) All-right dynamics of the sleep EEG. J Sleep Res 2:70–81

    Article  PubMed  Google Scholar 

  • Aeschbach D, Cajochen C, Tobler I, Dijk DJ, Borbély AA (1994a) Sleep in a sitting position: effect of triazolam on sleep and EEG power spectra. Psychopharmacology (Berl) 114:209–214

    Article  Google Scholar 

  • Antonioli M, Solano L, Torre A, Violani C, Costa M, Bertini M (1981) Independence of REM density from other REM sleep parameters before and after REM deprivation. Sleep 4:221–225

    PubMed  CAS  Google Scholar 

  • Balkin TJ, O’Donnell VM, Kamimori GH, Redmond DP, Belenky G (1989) Administration of triazolam prior to recovery sleep: effects on sleep architecture, subsequent alertness and performance. Psychopharmacology 99:526–531

    Article  PubMed  CAS  Google Scholar 

  • Beersma DGM, Daan S, Dijk DJ (1987) Sleep intensity and timing — a model for their circadian control. Lect Math Life Sci 19:39–62

    Google Scholar 

  • Beersma DGM, Dijk DJ, Blok CGH, Everhardus I (1990) REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalogr Clin Neurophysiol 76:114–122

    Article  PubMed  CAS  Google Scholar 

  • Belyavin A, Nicholson AN (1987) Rapid eye movement sleep in man: modulation by benzodiazepines. Neuropharmacology 26:485–491

    Article  PubMed  CAS  Google Scholar 

  • Blake H, Gerard RW (1937) Brain potentials during sleep. Am J Physiol 119:692–703

    Google Scholar 

  • Borbély AA (1980) Sleep: circadian rhythm versus recovery process. In: Koukkou M, Lehmann D, Angst J (eds) Functional states of the brain: their determinants. Elsevier, Amsterdam, pp 151–161

    Google Scholar 

  • Borbély AA (1982) A two-process model of sleep. Hum Neurobiol 1:195–204

    PubMed  Google Scholar 

  • Borbély AA, Achermann P (1991) Ultradian dynamics of sleep after a single dose of benzodiazepine-hypnotics. Eur J Pharmacol 195:11–18

    Article  PubMed  Google Scholar 

  • Borbély AA, Achermann P (1992) Concepts and models of sleep regulation: an overview. J Sleep Res 1:63–79

    Article  PubMed  Google Scholar 

  • Borbély AA, Neuhaus HU (1979) Sleep-deprivation: effect on sleep and EEG in the rat. J Comp Physiol 133:71–87

    Article  Google Scholar 

  • Borbély AA, Wirz-Justice A (1982) Sleep, sleep deprivation and depression. A hypothesis derived from a model of sleep regulation. Hum Neurobiol 1:205–210

    PubMed  Google Scholar 

  • Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep-deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51:483–493

    Article  PubMed  Google Scholar 

  • Borbély AA, Mattmann P, Loepfe M, Fellmann I, Gerne M, Strauch I, Lehmann D (1983) A single dose of benzodiazepine hypnotics alters the sleep EEG in the subsequent drug-free night. Eur J Pharmacol 89:157–161

    Article  PubMed  Google Scholar 

  • Borbély AA, Tobler I, Hanagasioglu M (1984) Effect of sleep deprivation on sleep and EEG power spectra in the rat. Behav Brain Res 14:171–182

    Article  PubMed  Google Scholar 

  • Borbély AA, Mattmann P, Loepfe M, Strauch I, Lehmann D (1985) Effect of benzodiazepine hypnotics on all-night sleep EEG spectra. Hum Neurobiol 4:189–194

    PubMed  Google Scholar 

  • Brunner DP, Dijk DJ, Tobler I, Borbély AA (1990) Effect of partial sleep deprivation on sleep stages and EEG power spectra: evidence for non-REM and REM sleep homeostasis. Electroencephalogr Clin Neurophysiol 75:492–499

    Article  PubMed  CAS  Google Scholar 

  • Brunner DP, Dijk DJ, Münch M, Borbély AA (1991) Effect of zolpidem on sleep and sleep EEG spectra in healthy young man. Psychopharmacology (Berl) 104:1–5

    Article  CAS  Google Scholar 

  • Brunner DP, Dijk DJ, Borbély AA (1993) A repeated partial sleep deprivation progressively changes the EEG during sleep and waking. Sleep 16:100–113

    PubMed  CAS  Google Scholar 

  • Cartwright RD, Monroe LJ, Palmer C (1967) Individual differences in response to REM deprivation. Arch Gen Psychiatry 16:297–303

    Article  PubMed  CAS  Google Scholar 

  • Church MW, March JD, Hibi S, Benson K, Cavness C, Feinberg I (1975) Changes in the frequency and amplitude of delta activity during sleep. Electroencephalogr Clin Neurophysiol 39:1–7

    Article  PubMed  CAS  Google Scholar 

  • Copinschi G, Van Onderbergen A, L’Hermite-Balériaux M, Szyper M, Caufriez A, Bosson D, L’Hermite M, Robyn C, Turek FW, Van Cauter E (1990) Effects of the short-acting benzodiazepine triazolam taken at bedtime on circadian and sleep-related hormonal profiles in normal men. Sleep 13:232–244

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Daan S (1989) Sleep EEG spectral analysis in a diurnal rodent: Eutamias sibiricus. J Comp Physiol [A] 165:205–215

    Article  CAS  Google Scholar 

  • Dijk DJ, Beersma DGM, Daan S (1987) EEG power density during nap sleep: reflection of an hourglass measuring the duration of prior wakefulness. J Biol Rhythms 2:207–219

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Beersma DGM, Daan S, van den Hoofdakker RH (1989) Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleep stages and EEG power spectra. Eur J Pharmacol 171:207–218

    Article  PubMed  CAS  Google Scholar 

  • Dijk DJ, Brunner DP, Beersma DGM, Borbély AA (1990a) Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep 13:430–440

    Google Scholar 

  • Dijk DJ, Brunner DP, Borbély AA (1990b) Time course of EEG power density during long sleep in humans. Am J Physiol 258:R650–R661

    Google Scholar 

  • Dijk DJ, Brunner DP, Aeschbach D, Tobler I, Borbély AA (1992) The effects of ethanol on human sleep EEG power spectra differ from those of benzodiazepine receptor agonists. Neuropsychopharmacology 7:225–232

    PubMed  CAS  Google Scholar 

  • Dijk DJ, Hayes B, Czeisler CA (1993) Analysis of spindle activity by transient pattern recognition software and power spectral analysis. Sleep Res 22:426

    Google Scholar 

  • Dossi RC, Nunez A, Steriade M (1992) Electrophysiology of a slow (0.5–4Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol (Lond) 447:215–234

    CAS  Google Scholar 

  • Feinberg I, Floyd TC, March JD (1987) Effects of sleep loss on delta (0.3–3 Hz) EEG and eye movement density: new observations and hypotheses. Electroencephalogr Clin Neurophysiol 67:217–221

    Article  PubMed  CAS  Google Scholar 

  • Franken P, Dijk DJ, Tobler I, Borbély AA (1991) Sleep deprivation in the rat: effects of electroencephalogram power spectra, vigilance states, and cortical temperature. Am J Physiol 261:R198–R208

    PubMed  CAS  Google Scholar 

  • Friedman L, Bergmann BM, Rechtschaffen A (1979) Effects of sleep deprivation on sleepiness, sleep intensity, and subsequent sleep in the rat. Sleep 1:369–391

    PubMed  CAS  Google Scholar 

  • Gaillard JM, Blois R (1983) Effect of the benzodiazepine antagonist Ro 15-1788 on flunitrazepam-induced sleep changes. Br J Clin Pharmacol 15:529–536

    Article  PubMed  CAS  Google Scholar 

  • Gaillard JM, Blois R (1989) Differential effects of flunitrazepam on human sleep in combination with flumazenil. Sleep 12:120–132

    PubMed  CAS  Google Scholar 

  • Gaillard JM, Schulz P, Tissot R (1973) Effects of three benzodiazepines (nitrazepam flunitrazepam and bromazepam) on sleep of normal subjects studied with an automatic sleep scoring system. Pharmacopsychiatry 6:207–217

    Article  CAS  Google Scholar 

  • Geering BA, Achermann P, Eggimann F, Borbély AA (1993) Period-amplitude analysis and power spectral analysis: a comparison based on all-night sleep EEG recordings. J Sleep Res 2:121–129

    Article  PubMed  Google Scholar 

  • Johnson LC, Spinweber CL, Seidel WF, Dement WC (1983) Sleep spindle and delta changes during chronic use of a short-acting and a long-acting benzodiazepine hypnotic. Electroencephalogr Clin Neurophysiol 55:662–667

    Article  PubMed  CAS  Google Scholar 

  • Kales A, Kales JD, Scharf MB, Tan TL (1970) All-night EEG studies of chloral hydrate, flurazepam, and methaqualone. Arch Gen Psychiatr 23:219–225

    Article  PubMed  CAS  Google Scholar 

  • Kales A, Kales JD (1975) Shortcomings in the evaluation and promotion of hypnotic drugs. NEJM 293:827–827

    Article  Google Scholar 

  • Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol (Lond) 441:155–174

    CAS  Google Scholar 

  • McCarley RW, Massaquoi S (1992) Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control. J Sleep Res 1:132–137

    Article  PubMed  Google Scholar 

  • Mrosovsky N, Salmon PA (1987) A behavioural method for accelerating reentrainment of rhythms to new light-dark cycles. Nature 330:372–373

    Article  PubMed  CAS  Google Scholar 

  • Pappenheimer JR, Koski G, Fencl V, Karnovsky ML, Krueger JM (1975) Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol 38:1299–1311

    PubMed  CAS  Google Scholar 

  • Rechtschaffen A, Kales AA (1968) Manual of standardized terminology techniques and scoring system for sleep stages of human subjects. Department of Health, Education and Welfare, Public Health Service, Bethesda

    Google Scholar 

  • Reeth van O, Turek FW (1989) Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339:49–51

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RS, Bergmann BM, Rechtschaffen A (1976) Variations in slow wave activity during sleep in the rat. Physiol Behav 17:931–938

    Article  PubMed  CAS  Google Scholar 

  • Schneider-Helmert D (1988) Why low-dose benzodiazepine-dependent insomniacs can’t escape their sleeping pills. Acta Psychiatr Scand 78:706–711

    Article  PubMed  CAS  Google Scholar 

  • Sinha AK, Smythe H, Zarcone VP, Barchas JC, Dement WC (1972) Human sleep-electroencephalogram: a damped oscillatory phenomenon. J Theor Biol 35: 387–393

    Article  PubMed  CAS  Google Scholar 

  • Steiger A, Trachsel L, Guldner J, Hemmeter U, Rothe B, Rupprecht R, Vedder H, Holsboer F (1993) Neurosteroid pregnenolone induces sleep-EEG changes in man compatible with inverse agonistic GABAA-receptor modulation. Brain Res 615:267–274

    Article  PubMed  CAS  Google Scholar 

  • Steriade M, Curró Dossi R, Nunez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cor-tically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200–3217

    PubMed  CAS  Google Scholar 

  • Tobler I (1985) Deprivation of sleep and rest in vertebrates and invertebrates. In: Inoué S, Borbély AA (eds) Endogenous sleep substances and sleep regulation, vol 8. Scientific Societies Press, Tokyo, pp 57–66

    Google Scholar 

  • Tobler I, Borbély AA (1986) Sleep EEG in the rat as a function of prior waking. Electroencephalogr Clin Neurophysiol 64:74–76

    Article  PubMed  CAS  Google Scholar 

  • Tobler I, Jaggi K (1987) Sleep and EEG spectra in the Syrian hamster (Mesocricetus auratus) under baseline conditions and following sleep deprivation. J Comp Physiol [A] 161:449–459

    Article  CAS  Google Scholar 

  • Tobler I, Borbély AA (1990) The effect of 3-h and 6-h sleep deprivation on sleep and EEG spectra of the rat. Behav Brain Res 36:73–78

    Article  PubMed  CAS  Google Scholar 

  • Tobler I, Franken P, Scherschlicht R (1990) Sleep and EEG spectra in the rabbit under baseline conditions and following sleep deprivation. Physiol Behav 38:121–129

    Article  Google Scholar 

  • Tobler I, Franken P, Trachsel L, Borbély AA (1992) Models of sleep regulation in mammals. J Sleep Res 1:125–127

    Article  PubMed  Google Scholar 

  • Trachsel L, Tobler I, Borbély AA (1988) Electroencephalogram analysis of non-rapid eye movement sleep in rats. Am J Physiol 255:R27–R37

    PubMed  CAS  Google Scholar 

  • Trachsel L, Dijk DJ, Brunner D, Kiene C, Borbély AA (1990) Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology 3:11–18

    PubMed  CAS  Google Scholar 

  • Turek FW, Losee-Olson S (1986) A benzodiazepine used in the treatment of insomnia phase-shifts the mammalian circadian clock. Nature 321:167–168

    Article  PubMed  CAS  Google Scholar 

  • Uchida S, Maloney T, March JD, Azari R, Feinberg I (1991) Sigma (12–15 Hz) and delta (0.3–3 Hz) EEG oscillate reciprocally within NREM sleep. Brain Res Bull 27:93–96

    Article  PubMed  CAS  Google Scholar 

  • Webb WB, Agnew HW (1971) Stage 4 sleep. Influence of time course variables. Science 174:1354–1356

    Article  PubMed  CAS  Google Scholar 

  • Wee BE, Turek FW (1989) Midazolam, a short-acting benzodiazepine, resets the circadian clock of the hamster. Pharmacol Biochem Behav 32:901–906

    Article  PubMed  CAS  Google Scholar 

  • Williams HL, Hammack JT, Daly RL, Dement WC, Lubin A (1964) Responses to auditory stimulation, sleep loss and the EEG stages of sleep. Electroencephalogr Clin Neurophysiol 16:269–279

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Borbély, A.A. (1995). Principles of Sleep Regulation: Implications for the Effect of Hypnotics on Sleep. In: Kales, A. (eds) The Pharmacology of Sleep. Handbook of Experimental Pharmacology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57836-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57836-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63372-0

  • Online ISBN: 978-3-642-57836-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics