Skip to main content

Pharmacology of the Adenosine System

  • Chapter
The Pharmacology of Sleep

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 116))

Abstract

Adenosine is a nucleoside which consists of the purine base adenine linked to ribose (Fig. 1). It is produced by two main enzymatic reactions involving dephosphorylation of 5′-nucleotidase (EC 3.1.5.5) and alkaline phosphatase (EC 3.1.3.1) as well as hydrolysis of S-adenosyl-l-homocysteine (SAH) by SAH-hydrolase (3.3.1.1). Adenosine may be formed intracellularly, as a result of a breakdown of cytosolic adenosine 5′-triphosphate (ATP), or extracellularly from ATP. In nerve tissue, an increase in nerve firing releases both adenosine and ATP, which is then extracellularly degraded to adenosine (Stone et al. 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal RP, Spector T, Parks RE (1977) Tight-binding inhibitors. IV. Inhibition of adenosine deaminase by various inhibitors. Biochem Pharmacol 26:359–367

    Article  PubMed  CAS  Google Scholar 

  • Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischaemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271

    Article  CAS  Google Scholar 

  • Bhattacharya IC, Goldstein L, Pfeiffer CC (1970) Influence of acute and chronic nicotine administration on EEG reactivity to drugs in rabbits. I. Nucleosides and nucleotides. Res Commun Chem Pathol Pharmacol 1:99–108

    PubMed  CAS  Google Scholar 

  • Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. J Pharmacol Exp Ther 29:331–346

    CAS  Google Scholar 

  • Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hartman JD, Hays SJ, Huang CC (1987a) Binding of the A1-selective adenosine antagonist 8 cyclopentyl-l,3-dipropylxanthine to rat brain membranes. Naunyn Schmiedebergs Arch Pharmacol 335:59–63

    Article  PubMed  CAS  Google Scholar 

  • Bruns RF, Fergus JH, Badger EW, Bristol JA, Santay LA, Hays SJ (1987b) PD115–199: an antagonist ligand for adenosine A2 receptors. Naunyn Schmiedebergs Arch Pharmacol 335:64–69

    Article  PubMed  CAS  Google Scholar 

  • Buday PV, Carr CJ, Miya TS (1961) A pharmacologic study of some nucleosides and nucleotides. J Pharm Pharmacol 13:290–299

    Article  CAS  Google Scholar 

  • Chagoya DeSanchez V, Hernandez-Munoz R, Diaz-Munoz M, Suarez J, Vidrio S, Yanez L (1983) Circadian variations of adenosine and its physiological meaning in the energetic homeostasis of the cell and the sleep-wake cycle of the rat. 4th International Congress on Sleep Research, Washington, p 255

    Google Scholar 

  • Daly JW, Butts-Lamb P, Padgett W (1983) Subclasses of adenosine receptors in the central nervous system: interactions with caffeine and related methylxanthines. Cell Mol Pharmacol 3:69–80

    CAS  Google Scholar 

  • Dolphin AC, Prestwich SA, Forda SR (1985) Presynaptic modulation by adenosine analogues: relationship to adenylate cyclase. In: Stefanovich V, Rudolphi E, Schubert P (eds) Adenosine modulation of cell function. IRL, Oxford, p 107

    Google Scholar 

  • Dunwiddie TV, Worth T (1982) Sedative and anti-convulsant effects of adenosine analogs in mouse and rat. J Pharmacol Exp Ther 220:70–76

    PubMed  CAS  Google Scholar 

  • Feldberg W, Sherwood SL (1954) Injections of drugs into the lateral ventricle of the cat. J Physiol (Lond) 123:148–167

    CAS  Google Scholar 

  • Haas HH, Greene RW (1988) Endogenous adenosine inhibits hippocampal CAI neurons: further evidence from extra- and intra-cellular recordings. Naunyn Schmiedebergs Arch Pharmacol 337:561–565

    Article  PubMed  CAS  Google Scholar 

  • Harms HH, Warden G, Mulder AH (1979) Effects of adenosine on depolarization-induced release of various radiolabeled neurotransmitters from slices of rat corpus striatum. Neuropharmacology 18:577–580

    Article  PubMed  CAS  Google Scholar 

  • Haulica I, Ababei L, Branisteanu D, Topoliceanu F (1973) Preliminary data on the possible hypnogenic role of adenosine. J Neurochem 21:1019–1020

    Article  PubMed  CAS  Google Scholar 

  • Hawkins M, Pravica M, Radulovacki M (1988a) Chronic administration of diazepam downregulates adenosine receptors in the rat brain. Pharmacol Physiol Behav 21:479–482

    CAS  Google Scholar 

  • Hawkins M, Hajduk P, O’Connor S, Radulovacki M, Starz KE (1988b) Effects of prolonged administration of triazolam on adenosine A1 and A2 receptors in the brain of rats. Brain Res 505:141–144

    Article  Google Scholar 

  • Hedquist P, Fredholm BB (1976) Effects of adenosine on adrenergic neurotransmission: prejunctional inhibition and postjunctional enhancement. Naunyn Schmiedebergs Arch Pharmacol 293:217–224

    Article  Google Scholar 

  • Kafka MS, Wirz-Justice A, Naber D, Moore RY, Benedito MA (1983) Circadian rhythms in rat brain neurotransmitter receptors. Fed Proc 42:2796

    PubMed  CAS  Google Scholar 

  • Klabunde RE (1983) Dipyridamole inhibition of adenosine metabolism in human blood. Eur J Pharmacol 93:21–26

    Article  PubMed  CAS  Google Scholar 

  • Loew DM, Spiegel R (1976) Polygraphic sleep studies in rats and humans. Their use in psychopharmacologic research. Arzneimittelforschung 26:1032–1035

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper MF, Wolff J (1980) Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 77:2551–2554

    Article  PubMed  CAS  Google Scholar 

  • Marangos PJ, Boulenger JP, Patel J (1985) Effects of chronic caffeine on brain adenosine receptors: regional and ontogenic studies. Life Sci 34:899–907

    Article  Google Scholar 

  • Marley E, Nistico G (1972) Effects of catecholamines and adenosine derivatives given into the brain of fowls. Br J Pharmacol 46:619–636

    Article  PubMed  CAS  Google Scholar 

  • Martinson EA, Johnson PA, Wells JN (1987) Potent adenosine receptor antagonists that are selective for the A1 receptor subtype. Mol Pharmacol 31:247–252

    PubMed  CAS  Google Scholar 

  • Mathieu-Levy N (1968) Contribution à l’étude du mechanisme de la potentialisation du sommeil experimental par l’acide adenosine triphosphorique (ATP). Sur quelques actions d’ATP au niveu du système nerveaux central. Therapie 23: 1157–1173

    PubMed  CAS  Google Scholar 

  • Mendelson WB, Guthrie RD, Frederick G, Wyatt RJ (1974) The flowerpot technique of rapid eye movement (REM) sleep deprivation. Pharmacol Biochem Behav 2:553–556

    Article  PubMed  CAS  Google Scholar 

  • Mereu GP, Scarnatti E, Paglietti E, Chessa P, Chicara G, Gessa GI (1979) Sleep induced by low doses of apomorphine in rats. Electroencephalogr Clin Neurophysiol 46:214–219

    Article  PubMed  CAS  Google Scholar 

  • Michaelis ML, Michaelis EK, Myers SL (1979) Adenosine modulation of synaptosomal dopamine release. Life Sci 24:2083–2092

    Article  PubMed  CAS  Google Scholar 

  • O’Connor SD, Hawkins M, Radulovacki M (1991) The effect of soluflazine on adenosine receptors in the rat brain. Neuropsychopharmacology 30:93–95

    Google Scholar 

  • O’Regan MH, Phillis JW (1988) Potentiation of adenosine-evoked depression on rat cerebral cortical neurons by triazolam. Brain Res 445:376–379

    Article  PubMed  Google Scholar 

  • Phillis JW (1979) Diazepam potentiation of purinergic depression of central neurons. Can J Physiol Pharmacol 57:432–435

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1981) The role of adenosine and its nucleotides in central synaptic transmission. Prog Neurobiol 16:187–193

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH (1982) Adenosine and benzodiazepine action. In: Usdin E, Skolnick P, Tallman JF, Greenblatt D, Paul SM (eds) Adenosine and benzodiazepine action. Macmillan, London, p 497

    Google Scholar 

  • Phillis JW, Kostopoulos GK, Limacher JJ (1974) Depression of corticospinal cells by various purines and pyrimidines. Can J Physiol Pharmacol 52:1226–1230

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Edstrom JP, Kostopoulos GK, Kirkpatrick JR (1979a) Effects of adenosine and adenosine nucleotides on synaptic transmission in the cerebral cortex. Can J Physiol Pharmacol 57:1289–1312

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Edstrom JP, Ellis SW, Kirkpatrick JR (1979b) Theophylline antagonizes flurazepam-induced depression of cerebral cortical neurons. Can J Physiol Pharmacol 57:917–920

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Wu PH, Bender AS (1981) Inhibition of adenosine uptake into rat brain synaptosomes by the benzodiazepines. Gen Pharmacol 12:67–70

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M (1987) Progress in sleep. N Engl J Med 316:1275

    Article  Google Scholar 

  • Radulovacki M, Walowitch P, Yanik G (1980) Caffeine produces REM sleep rebound in rats. Brain Res 201:497–500

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M, Miletich RS, Green RD (1982) N6(L-Phenylisopropyl) adenosine (L-PIA) increases slow wave sleep (S2) and decreases wakefulness in rats. Brain Res 246:178–180

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1983) Hypnotic effects of deoxycoformycin in rats. Brain Res 271:392–395

    Article  PubMed  CAS  Google Scholar 

  • Radulovacki M, Virus RM, Djuricic-Nedelson M, Green RD (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228:268–274

    PubMed  CAS  Google Scholar 

  • Radulovacki M, Virus RM, Rapoza D, Crane R (1985) A comparison of the dose response effects of pyrimidine ribonucleosides and adenosine on sleep in rats. Psychopharmcology (Berl) 87:136–140

    Article  CAS  Google Scholar 

  • Reddington M, Erfurth A, Lee KS (1986) Heterogeneity of binding sites of N-ethylcarboxamido-[3H] adenosine in rat brain: effects of N-ethylmaleimide. Brain Res 399:232–239

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg RS, Zepelin H, Rechtschaffen A (1979) Sleep in young and old rats. J Gerontol 34:525–532

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Jhamandas KH (1976) Inhibition of acetylcholine release from cholinergic nerves by adenosine, adenosine nucleotides, and morphine: antagonism by theophylline. J Pharmacol Exp Ther 197:379–390

    PubMed  CAS  Google Scholar 

  • Skolnick P, Nimilkitpaisan Y, Stalvey I, Daley JW (1978) Inhibition of brain adenosine deaminase by 2′-deoxycoformycin and erythro-9-(2-hydroxy-3-nonyl) adenine. J Neurochem 30:1579–1583

    Article  CAS  Google Scholar 

  • Snyder SH, Sklar P (1984) Psychiatric progress. Behavioral and molecular actions of caffeine: focus on adenosine. J Psychiatry Res 18:91–106

    Article  CAS  Google Scholar 

  • Snyder SH, Katims JJ, Annau Z, Bruns RF, Daly JW (1981) Adenosine receptors and behavioral actions of methylxanthines. Proc Natl Acad Sci USA 78:3260–3264

    Article  PubMed  CAS  Google Scholar 

  • Sterman MB, Clemente CD (1962) Forebrain inhibitory mechanisms: critical synchronization induced by basal forebrain stimulation. Exp Neurol 6:91–102

    Article  PubMed  CAS  Google Scholar 

  • Stone TW (1981) Physiological roles of adenosine and adenosine 5′-triphosphate in the nervous system. Neuroscience 6:523–552

    Article  PubMed  CAS  Google Scholar 

  • Stone TW, Newby AC, Lloyd HGA (1990) Adenosine release. In: Williams M (ed) The adenosine receptors. Humana, Clifton, p 173

    Chapter  Google Scholar 

  • Ten Bruggencate D, Steinberg R, Stockle H, Nicholson C (1977) Modulation of extracellular CA++ and K+-levels in the mammalian cerebellar cortex. In: Ryall RW, Kelly JS (eds) Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Elsevier/North-Holland, Amsterdam, p442

    Google Scholar 

  • Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Physiol Behav 40:33–40

    CAS  Google Scholar 

  • Ukena D, Shamin MT, Padgett W, Daly JW (1986) Analogs of caffeine: antagonists with selectivity for A2 adenosine receptors. Life Sci 39:743–750

    Article  PubMed  CAS  Google Scholar 

  • Van Belle H (1985) Myocardial purines during ischemia, reperfusion and pharmacological protection. Mol Physiol 8:615–630

    Google Scholar 

  • Van Calker D, Muller M, Hambrecht V (1979) Adenosine regulates, via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem 33:999–1005

    Article  PubMed  Google Scholar 

  • Virus RM, Baglajewski T, Radulovacki M (1984a) Circadian variation of [3H]N6-(L-phenylisopropyl) adenosine binding in rat brain. Neurosci Lett 46:219–222

    Article  PubMed  CAS  Google Scholar 

  • Virus RM, Baglajewski T, Radulovacki M (1984b) [3H]N6-(L-Phenylisopropyl) adenosine binding in brains from young and old rats. Neurobiol Aging 5:61–62

    Article  PubMed  CAS  Google Scholar 

  • Virus RM, Ticho BS, Pilditch M, Radulovacki M (1990) A comparison of the effects of caffeine, 8-cyclopentyl theophylline, and alloxazine on sleep in rats; possible roles of central nervous system adenosine receptors. Neuropsychopharmacology 3:243–249

    PubMed  CAS  Google Scholar 

  • Williams M, Risley EA (1981) Interaction of putative anxiolyts agentic agents with central adenosine receptors. Can J Physiol Pharmacol 59:897–900

    Article  PubMed  CAS  Google Scholar 

  • Williams M, Francis J, Ghai G, Braunwalder A, Psychoyos S, Stone GA, Cash WD (1987) Biochemical characterization of the triazoloquinazoline, CGS15843A, a novel non-xanthine adenosine antagonist. J Pharmacol Exp Ther 241:415–420

    PubMed  CAS  Google Scholar 

  • Yanik G, Radulovacki M (1987) REM sleep deprivation upregulates adenosine A1 receptors. Brain Res 402:362–364

    Article  PubMed  CAS  Google Scholar 

  • Yanik G, Glaum S, Radulovacki M (1987) The dose response effects of caffeine on sleep in rats. Brain Res 403:177–180

    Article  PubMed  CAS  Google Scholar 

  • Yeung SH, Green RD (1984) [3H]5′-N-ethyl-carboxamide adenosine binds to both Ra and Ri adenosine receptors in rat striatum. Naunyn Schmiedebergs Arch Pharmacol 325:218–225

    Article  PubMed  CAS  Google Scholar 

  • Zepelin H, Whitehead WE, Rechtschaffen A (1972) Aging and sleep in the albino rat. Behav Biol 7:65–74

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Radulovacki, M. (1995). Pharmacology of the Adenosine System. In: Kales, A. (eds) The Pharmacology of Sleep. Handbook of Experimental Pharmacology, vol 116. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57836-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57836-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63372-0

  • Online ISBN: 978-3-642-57836-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics