Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 140))

Abstract

This chapter describes the fourth generation of instructional system development (ISD4). ISD4 is uniquely suited for automation because of its dynamic and iterative system design. Employing science-wide complexity theory, ISD4 offers a solution(s) to learning problems only after the problem is defined. Additionally, the prescribed solution can be altered during the actual process of instructional development. The situational evaluation component (diagnosis) proposes solutions based upon the learning problem, risk (i.e., cost and efficiency), and instructional design competence of the author. The knowledge base of ISD4 includes contemporary updates from such fields as cognitive psychology, educational technology, and risk management. As a result, the fourth generation ISD models are showing extensive changes in most techniques of the instructional development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausubel, D. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart, & Winston.

    Google Scholar 

  • Battista, M., & Clements, C. (1986). The effect of LOGO and CAI problem solving environments on problem solving abilities and mathematics achievement. Computers in Human Behavior, 2, 183–193.

    Article  Google Scholar 

  • Breuer, K. (1985). Computer simulations and cognitive development. In K. A. Duncan & D. Harris (Eds.), Computers in education (pp. 239–244). Amsterdam: North Holland.

    Google Scholar 

  • Breuer, K. (1992). Cognitive development based on process learning environments. In S. Dijkstra, H. P. M. Krammer, & J.J. G. van Merriënboer (Eds.), Instructional models in computer-based learning environments (pp. 263–277). NATO ASI Series F., Vol. 104. Berlin: Springer.

    Google Scholar 

  • Breuer, K., & Streufert, S. (in press). The strategic management simulations (SMS): A case-comparison analysis of the German SMS versions. In M. Mulder, W. J. Nijhoff, & R. O. Brinkeroff (Eds.), Corporate training for effective performance. Boston: Kluwer.

    Google Scholar 

  • Breuer, K., & Kummer, R. (1990). Cognitive effects from process learning with computer-based simulations. Computers in Human Behavior, 6, 69–81.

    Article  Google Scholar 

  • Bunderson, C. V., & Inouye, D. K. (1987). The evaluation of computer-aided educational delivery systems. In R. Gagné (Ed.), Instructional technology: Foundations. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Bunderson, V., Olson, J., & Li, Z. (1989). Four generations of computer-based testing. In R. Linn (Ed.), Handbook on educational measurement (pp. 114–146). New York: Academic Press.

    Google Scholar 

  • Burton, J. S., & Brown, J. S. (1979). An investigation of computer coaching for informal learning activities. International Journal of Man-Machine Studies, 11, 5–24.

    Article  Google Scholar 

  • Cates, W. M. (1993). A small-scale comparison of the equivalence of paper-and-pencil and computerized versions of student end-of-course evaluations. Computers in Human Behavior, 9, 401–410.

    Article  Google Scholar 

  • Chubb, H. (1990). Looking at systems as process. Family Process, 29, 169–175.

    Article  Google Scholar 

  • Clark, R. E. (1983). Reconsidering research on learning from media. Review of Educational Research, 53, 445–459.

    Google Scholar 

  • Crowder, N. A. (1960). Automatic tutoring by intrinsic programming. In A. Lumsdaine, & R. Glaser (Eds.), Teaching machines and programmed learning (pp. 34–56). Washington, DC: National Education Association.

    Google Scholar 

  • Dijkstra, S., Krammer, H. P. M., & van Merriënboer, J. J. G. (Eds.). (1992). Instructional models in computer-based learning environments. NATO ASI Series F, Vol. 104. Berlin: Springer.

    Google Scholar 

  • Doughty, P. (in press). Management of instructional design. In S. Dijkstra, F. Schott, N. Seel, & R. D. Tennyson (Eds.), Instructional design: International perspectives. Vol. II. Solving instructional design problems. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Elmore, R. (1993). Effects of content organization and problem-oriented strategies in the improvements of cognitive skills. Unpublished doctoral dissertation, University of Minnesota, Minneapolis, MN.

    Google Scholar 

  • Feuerstein, R., Rand, Y., Hoffman, M. B., & Miller, R. (1980). Instrumental enrichment: An intervention program for cognitive modifiability. Baltimore: University Park Press.

    Google Scholar 

  • Frederiksen, N. (1984). Implications of cognitive theory for instruction in problem solving. Review of Educational Research, 54, 363–407.

    Google Scholar 

  • Gagné, R. M. (1985). The conditions of learning (4th ed.). New York: Holt, Rinehart, & Winston.

    Google Scholar 

  • Gagné, R. M., & Glaser, R. (1987). Foundations in learning research. In R. Gagné (Ed.), Instructional technology: Foundations. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gagné, R. M., & Merrill, M. D. (1992). Educational Technology Research and Development, 38, 23–30.

    Article  Google Scholar 

  • Gleick, J. (1987). Chaos: Making of a new science. New York: Norton.

    MATH  Google Scholar 

  • Glaser, R. (1962). Psychology and instructional technology. In R. Glaser (Ed.), Training research and education. Pittsburgh, PA: University of Pittsburgh Press.

    Google Scholar 

  • Goodyear, P. (1994). Foundations for courseware engineering. In R. D. Tennyson (Ed.), Automating instructional design, development, and delivery (pp. 7–28). NATO ASI F, Vol. 119. Berlin: Springer.

    Chapter  Google Scholar 

  • Hannafin, M. J. (this volume). Open-ended learning environments: Foundations, assumptions, and implications for automated design. In R. D. Tennyson & A. Barron (Eds.), Automating instructional design: Computer-based development and delivery tools. Berlin: Springer.

    Google Scholar 

  • Jonassen, D. H. (1992). Cognitive flexibility theory and its implications for designing CBI. In S. Dijkstra, P. H. M. Krammer, & J. J. G. van Merrienboer (Eds.). Instructional models in computer-based learning environments. NATO ASI Series F, Vol. 104. Berlin: Springer.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decisions under risk. Econometrica, 47, 262–291.

    Article  Google Scholar 

  • Kozma, R. B. (in press). Will media influence learning: Reframing the debate. Educational Technology Research and Development.

    Google Scholar 

  • Lawler, R. (1985). Computer experience and cognitive development: A children’s learning in computer culture. New York: Wiley.

    Google Scholar 

  • Mann, S. R. (1992). Chaos theory and strategic thought. Parameters, 22(30), 54–68

    Google Scholar 

  • McGuire, T., Kiesler, S., & Siegel, J. (1987). Group and computer-mediated discussion effects in risk decision making. Journal of Personality and Social Psychology, 52, 917–930.

    Article  Google Scholar 

  • Merrill, M. D. (1983). Component display theory. In C. M. Reigeluth (Ed.), Instructional design theories and models: An overview of their current status (pp 123–156). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Michaels, M. (1993). Human aspects of technology and anxiety. Unpublished doctoral dissertation, University of Minnesota, Minneapolis, MN.

    Google Scholar 

  • Morrison, G. R., Ross, S. M., O’Dell, J. K., & Schultz, C. W. (1988). Adapting text presentations to media attributes: Getting more out of less in CBI. Computers in Human Behavior, 4, 65–76.

    Article  Google Scholar 

  • Papert, S. (1980). Mindstorms. New York: Basic Books.

    Google Scholar 

  • Pressey, S. L. (1926). A simple apparatus which gives tests and scores and teaches. School and Society, 23, 373–392.

    Google Scholar 

  • Rasch, M. (1988). Computer-based instructional strategies to improve creativity. Computers in Human Behavior, 4, 23–28.

    Article  Google Scholar 

  • Reed, M. (1992). Computers and improvements in writing. Computers in Human Behavior, 8, 34–47.

    Google Scholar 

  • Reigeluth, C. M. (Ed.). (1987). Instructional theories in action: Lessons illustrating selected theories and models. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Richards, D. (1990). Is strategic decision making chaotic? Behavioral science, 35, 219–232.

    Article  MathSciNet  Google Scholar 

  • Rogers, E. M. (1983). Diffusion of innovations (3rd ed.). New York: Free Press.

    Google Scholar 

  • Romiszowski, A. J. (1993). Using telecommunications in training. In G. M. Piskurich (Ed.), The ASTD handbook of instructional technology (pp. 14.1–14.16). New York: McGraw-Hill.

    Google Scholar 

  • Ross, S. M. (1983). Increasing the meaningfulness of quantitative material be adapting context to student background. Journal of Educational Psychology, 75, 519–529.

    Article  Google Scholar 

  • Ross, S. M., McCormick, D. B., & Krisak, J. (1986). Adaptive instructional strategies for teaching rules in mathematics. Educational Communications and Technology Journal, 30, 67–74.

    Google Scholar 

  • Salomon, G., Perkins, P. N., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2–9.

    Google Scholar 

  • Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.

    Google Scholar 

  • Skinner, B. F. (1954). The science of learning and the art of teaching. Harvard Educational Review, 24, 86–97.

    Google Scholar 

  • Skinner, B. F. (1958). Teaching machines. Science, 128, 969–977.

    Article  Google Scholar 

  • Snow, R. E., & Lohman, D. F. (1989). Implications of cognitive psychology for educational measurement. In R. L. Linn (Ed.), Educational measurement: Third edition. New York: American Council on Education and Macmillan.

    Google Scholar 

  • Sproull, L., & Kiesler, S. (1991). Connections. Cambridge, MA: MIT Press.

    Google Scholar 

  • Streufert, S., Nogami, G. Y., & Breuer, K. (in press). Managerial assessment and training. Toronto: Hogrefe.

    Google Scholar 

  • Tennyson, R. D. (1993). A framework for an automated instructional design advisor. In J. M. Spector, M. Poison, & D. Muraida (Eds.), Automating instructional design: Concepts and issues (pp. 191–212). Englewood Cliffs, NJ: Educational Technology.

    Google Scholar 

  • Tennyson, R. D. (1994). Knowledge base for automated instructional system development. In R. D. Tennyson (Ed.), Automating instructional design, development, and delivery. NATO ASI Series F, Vol. 119. Berlin: Springer.

    Chapter  Google Scholar 

  • Tennyson, R. D., & Breuer, K. (1993). Computer-based training: Advancements from cognitive science. In G. M. Piskurich (Ed.), The ASTD handbook of instructional technology. New York: McGraw-Hill.

    Google Scholar 

  • Tennyson, R. D., & Breuer, K. (1994). ISD expert: An automated approach to instructional design. In R. D. Tennyson (Ed.), Automating instructional design, development, and delivery. NATO ASI Series F, Vol. 119. Berlin: Springer.

    Chapter  Google Scholar 

  • Tennyson, R. D., & Christensen, D. L. (1988). MAIS: An intelligent learning system. In. D. H. Jonassen (Ed.), Instructional designs for microcomputer courseware (pp. 247–274). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Tennyson, R. D., & Cocchiarella, M. J. (1986). An empirically based instructional design theory for teaching concepts. Review of Educational Research, 36, 40–71.

    Google Scholar 

  • Tennyson, R. D., Elmore, R., & Snyder, L. (1992). Advancements in instructional design theory: Contributions from cognitive science and educational technology. Educational Technology: Research and Development, 40, 9–22.

    Article  Google Scholar 

  • Tennyson, R. D., & Park, O. (1987). Artificial intelligence and computer-assisted learning. In R. Gagné (Ed.), Instructional technology: Foundations. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Tennyson, R. D., & Rasch, M. (1988). Linking cognitive learning theory to instructional prescriptions. Instructional Science, 17, 369–385.

    Article  Google Scholar 

  • Thorndike, E. (1913). The psychology of learning: Educational psychology, Vol. 2. New York: Teachers College Press.

    Book  Google Scholar 

  • Zvacek, S. M. (1988). Word processing and the teaching of writing. Computers In Human Behavior, 4, 29–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tennyson, R.D. (1995). Instructional System Development: The Fourth Generation. In: Tennyson, R.D., Barron, A.E. (eds) Automating Instructional Design: Computer-Based Development and Delivery Tools. NATO ASI Series, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57821-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57821-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63366-9

  • Online ISBN: 978-3-642-57821-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics