Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 100))

  • 585 Accesses

Abstract

Calculating the properties of a system of correlated electrons at finite temperatures is a demanding task. One must be able to describe the effect of correlations not only on the ground state, but also on the low-energy excitations of the system. Of particular interest is the partition function Z or the free energy F of the electrons. When a grand-canonical ensemble is considered the free energy is replaced by the thermodynamic potential Ω. We can deduce from those quantities a number of static thermodynamic properties. The partition function is the trace of an operator

$$ U\left( \beta \right) = {{\text{e}}^{{\text{ - }}\beta {\text{H}}}},$$
(1)

where β = l/k B T and k B denotes Boltzmann’s constant. If one sets β = it, then U(it) is the time evolution operator of the system. When it is applied to a state ∣Φ〉, it describes how this state evolves with time. This suggests treating β as imaginary time, which has the advantage of enabling us to develop a perturbation theory for finite temperatures, a straightforward generalization of the perturbation treatment of the time evolution operator at T = 0.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kubo: J. Phys. Soc. Jpn. 17, 1100 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski: Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ 1963)

    MATH  Google Scholar 

  3. E.K.U. Gross, E. Runge, O. Heinonen: Many-Particle Theory (A. Hilger, Bristol 1991)

    MATH  Google Scholar 

  4. J.R. Schrieffer: Theory of Superconductivity (W.A. Benjamin, Reading, MA 1964)

    MATH  Google Scholar 

  5. G.D. Mahan: Many Particle Physics (Plenum, New York 1981)

    Google Scholar 

  6. S. Doniach, E.H. Sondheimer: Green’s Functions for Solid State Physicists (Benjamin/ Cummings, London 1974)

    Google Scholar 

  7. E.M. Lifshitz, L.P. Pitajewski: Statistical Physics, Course of Theoretical Physics, ed. by L.D. Landau, E.M. Lifshitz, Vol. 9 (Pergamon, Oxford 1981)

    Google Scholar 

  8. Tran Minh-Tien: Z. Phys. B 95, 515 (1994)

    Article  ADS  Google Scholar 

  9. R.L. Stratonovich: Dokl. Akad. Nauk SSSR 115, 1907 (1957) [Engl. transl: Sov. Phys.-Dokl. 2, 416 (1958)]

    Google Scholar 

  10. J. Hubbard: Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  11. R.P. Feynman: Statistical Mechanics: A Set of Lectures (Addison-Wesley, Reading, MA 1987)

    Google Scholar 

  12. J.W. Negele, H. Orland: Quantum Many-Particle Systems (Addison-Wesley, Redwood City, CA 1988)

    MATH  Google Scholar 

  13. K. Binder (ed.): Monte Carlo Methods in Statistical Physics, Topics Curr. Phys., Vol. 7, 2nd edn. (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  14. D.J. Scalapino: Phys. Scr. T 9, 203 (1985)

    Article  ADS  Google Scholar 

  15. H. De Raedt, A. Lagendijk: Phys. Rep. 127, 233 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  16. D. Ceperly, B. Alder: Science 231, 555 (1986)

    Article  ADS  Google Scholar 

  17. M. Suzuki (ed.): Quantum Monte Carlo Methods, Springer Ser. Solid-State Sci., Vol. 74 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  18. K. Binder (ed.): Applications of the Monte Carlo Method in Statistical Physics, Topics Curr. Phys., Vol. 36, 2nd edn. (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  19. D.E. Knuth: The Art of Computer Programming (Addison-Wesley, Reading, MA 1981)

    MATH  Google Scholar 

  20. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. Teller, E. Teller: J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  21. S. Fahy, X.W. Wang, S.G. Louie: Phys. Rev. Lett. 61, 1631 (1988)

    Article  ADS  Google Scholar 

  22. M.H. Kalos: Phys. Rev. 128, 1791 (1962)

    Article  MathSciNet  ADS  Google Scholar 

  23. D.M. Ceperley, M.H. Kalos: In Ref. [7.13], p. 145

    Google Scholar 

  24. D.M. Ceperley: Phys. Rev. B 18, 3126 (1978)

    Article  ADS  Google Scholar 

  25. D.M. Ceperley, A J. Alder: Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  26. M.H. Kalos (ed.): Monte Carlo Methods in Quantum Problems, Nato Advanced Studies Institute (Reidel, Dordrecht 1984)

    Google Scholar 

  27. J. Doll, J. Gubernatis (eds.): Quantum Simulation of Condensed Matter Phenomena (World Scientific, Singapore 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fulde, P. (1995). Finite-Temperature Techniques. In: Electron Correlations in Molecules and Solids. Springer Series in Solid-State Sciences, vol 100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57809-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57809-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59364-5

  • Online ISBN: 978-3-642-57809-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics