Skip to main content

Tissue Engineering

  • Chapter
Book cover Gelenkknorpeldefekte
  • 55 Accesses

Zusammenfassung

Der Bedarf für neue therapeutische Ansätze zur Behandlung von Knorpelund Knochendefekten nimmt mit der wachsenden Zahl an Patienten mit degenerativen Erkrankungen des Skelettsystems, wie z. B. der Arthrose, stetig zu. Vielversprechende neue Technologien bietet das Tissue Engineering durch die Transplantation funktionell aktiver autologer Zellen, den Einsatz von morphogenen Wachstumsfaktoren und formgebender oder temporär stützender Biomaterialien. Mit Hilfe dieser Technologie solI neues Knorpelund Knochengewebe aufgebaut bzw. das pathologisch veränderte Gewebe regeneriert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Redlich A, Perka C, Schultz O, Spitzer R, Häupl T, Burmester GR, Sittinger M.: Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J Mat Sci (in press)

    Google Scholar 

  2. Perka C, Schultz 0, Spitzer R, Lindenhayn K, Burmester G, Sittinger M: Segmental Bone Repair by Tissue Engineered Periosteal Cell Transplants with Different Bioresorbable Carriers in Rabbits. Biomaterials (in press)

    Google Scholar 

  3. Perka C, Schultz O, Spitzer R, Lindenhayn K: The influence of transforming growth factor N1 on mesenchymal cell repair of full-thickness cartilage defects (submitted)

    Google Scholar 

  4. Kaps C, Hoffmann A, Czichos S, Tzylanowski P, Sittinger M, Häupl T, Huylebroeck D, Gross G, Gazit D: BMP-receptor-IA (BMPR-IA, Alk3) and not the BMPreceptor-IB (BMPR-IB, Alk6) mediates the BMP-2 dependent chondro-/osteogenic differentiation potential in mesenchymal progenitors C3H10T1/2. J Bone Min Res (submitted)

    Google Scholar 

  5. Gruber R, Sittinger M, Bujia J (1996) Untersuchungen zur in vitro Kultivierung von Humanchondrozyten bei Einsatz FCS-freier Zuchtmedien. Minimierung des möglichen Risikos einer Infektion mit Erregern von Prionen-Erkrankungen. Laryngo-Rhino Otol 75:105–108

    Article  CAS  Google Scholar 

  6. Sittinger M, Bräunling J, Kastenbauer E, Hammer C, Burmester G, Bujia J (1997) Untersuchungen zum Vermehrungspotential von Nasenseptum-Chondrozyten für die in-vitro Züchtung von Knorpeltransplantaten. Laryngo-Rhino Otol 76:96–100

    Article  CAS  Google Scholar 

  7. Kreklau B, Sittinger M, Mensing M, Voigt C, Berger G, Burmester G-R, Rahmanzadeh R, Gross U (1999) Tissue Engineering of Biphasic Joint Cartilage Transplants. Biomaterials 20:1743–1749

    Article  PubMed  CAS  Google Scholar 

  8. Rotter N, Sittinger M, Hammer C, Bujia J, Kastenbauer E (1997) Transplantation in vitro hergestellter Knorpelmaterialien: Charakterisierung der Matrixsynthese. Laryngo-Rhino Otol 76:241–247

    Article  CAS  Google Scholar 

  9. Haisch Rathert T, Jahnke V, Burmester GR, Sittinger M (1997) In vitro engineered cartilage for auricular reconstruction. Advances in Tissue Engineering and Biomaterials, York

    Google Scholar 

  10. Freed LE, Grande DA, Lingbin Z, Emmanuel J, Marquis JC, Langer R (1994) Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mat Res 28:891–899

    Article  CAS  Google Scholar 

  11. Perka C, Schultz O, Lindenhayn K, Spitzer RS, Muschik M, Sittinger M, Burmester GR: Joint cartilage repair with transplantation of embryonic chondrocytes embedded in collagen-fibrin-matrices. Clin Exp Rheum (in press)

    Google Scholar 

  12. Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217–221

    Article  CAS  Google Scholar 

  13. Endres M (1999) Untersuchung biomechanischer Eigenschaften von in vitro hergestellten Knorpeltransplantaten. Diplomarbeit Biotechnologie, Thesis, TFh Berlin

    Google Scholar 

  14. Bujia J, Alsalameh S, Naumann A, Wilmes E, Sittinger M, Burmester GR (1994) Humoral immune response against minor collagens type IX and XI in patients suffering from cartilage graft resorption after reconstructive surgery. Ann Rheum Dis 53:229–234

    Article  PubMed  CAS  Google Scholar 

  15. Sittinger M, Jerez R, Burmester G-R, Krafft T, Spitzer W (1996) Antibodies to collagens in sera from patients receiving bovine cartilage grafts. Ann Rheum Dis 55:333–334

    Article  PubMed  CAS  Google Scholar 

  16. Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM (1988) Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 82:2026–2037

    Article  PubMed  CAS  Google Scholar 

  17. Campbell IK, Piccoli DS, Butler DM, Singleton DK, Hamilton JA (1988) Recombinant human interleukin-1 stimulates human articular cartilage to undergo resorption and human chondrocytes to produce both tissue-and urokinase-type plasminogen activator. Biochim Biophys Acta 967:183–194

    Article  PubMed  CAS  Google Scholar 

  18. Luyten FP, Chen P, Paralkar V, Reddi AH (1994) Recombinant bone morphogenetic protein-4, transforming growth factor-beta 1, and activin A enhance the cartilage phenotype of articular chondrocytes in vitro. Exp Cell Res 210:224–229

    Article  PubMed  CAS  Google Scholar 

  19. Kaps C, Rathert T, Bramlage C, Haisch A, Ungethüm U, Sittinger M, Burmester G-R, Gross G, Häupl T: Bone morphogenetic proteins promote cartilage differentiation and protect engineered artificial cartilage from fibroblast invasion. Arthritis & Rheumatism (submitted)

    Google Scholar 

  20. Schultz O, Keyszer G, Zacher J, Sittinger M, Burmester G-R (1997) Development of in vitro model systems for destructive joint diseases. Novel strategies to establish inflammatory pannus. Arthritis and Rheumatism 40:1420–1429

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sittinger, M. (2001). Tissue Engineering. In: Erggelet, C., Steinwachs, M. (eds) Gelenkknorpeldefekte. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57716-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57716-1_3

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1265-8

  • Online ISBN: 978-3-642-57716-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics