Skip to main content

Genetic approaches to elucidate the regulatory role of phospholamban in the heart

  • Chapter
Molecular Approaches to Heart Failure Therapy
  • 92 Accesses

Abstract

In end-stage heart failure, several molecular, biochemical and functional alterations have been described to occur at the cellular level [11, 32]. Evidence indicates that disturbed excitation-contraction coupling processes may underlie disturbed myocardial function in various animal models and human conditions [3, 34]. Specifically, Ca2+ uptake and release by the sarcoplasmic reticulum (SR) have been shown to be altered, and the ratio of phospholamban/SR Ca2+ ATPase has been suggested to play a key role in the pathophysiology of heart failure [10]. Thus, it becomes important to dissect the molecular mechanisms governing the highly regulated excitation-contraction coupling process and their alterations in heart failure in order to develop new therapeutic approaches for this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Autry JM, Jones LR (1997) Functional Co-expression of the canine cardiac Ca2+ pump and phospholamban in Spodoptera frugiperda (Sf21) cells reveals new insights on ATPase regulation. J Biol Chem 272(25):15872–15880

    Article  PubMed  CAS  Google Scholar 

  2. Bers DM, Bassani JW, Bassani RA (1996) Na-Ca exchange and Ca fluxes during contraction and relaxation in mammalian ventricular muscle. Ann N Y Acad Sci 779:430–442

    Article  PubMed  CAS  Google Scholar 

  3. Beuckelmann DJ, Nabauer M, Erdmann E (1992) Intracellular calcium handling in isolated ventricular myocytes from patients with terminal heart failure [see comments]. Circulation 85(3):1046–1055

    Article  PubMed  CAS  Google Scholar 

  4. Chu G, Dorn GW 2nd, Luo W, Harrer JM, Kadambi VJ, Walsh RA, Kranias EG (1997) Monomeric phospholamban overexpression in transgenic mouse hearts. Circ Res 81(4):485–492

    Article  PubMed  CAS  Google Scholar 

  5. Chu G, Li L, Sato Y, Harrer JM, Kadambi VJ, Hoit BD, Bers DM, Kranias EG (1998) Pentameric assembly of phospholamban facilitates inhibition of cardiac function in vivo. J Biol Chem 273(50):33674–33680

    Article  PubMed  CAS  Google Scholar 

  6. Chu G, Luo W, Slack JP, Tilgmann C, Sweet WE, Spindler M, Saupe KW, Boivin GP, Moravec CS, Matlib MA, Grupp IL, Ingwall JS, Kranias EG (1996) Compensatory mechanisms associated with the hyperdynamic function of phospholambandeficient mouse hearts. Circ Res 79(6):1064–1076

    Article  PubMed  CAS  Google Scholar 

  7. Desai KH, Schauble E, Luo W, Kranias E, Bernstein D (1999) Phospholamban deficiency does not compromise exercise capacity. Am J Physiol 276(4 Pt 2):H1172–1177

    PubMed  CAS  Google Scholar 

  8. Fabiato A (1985) Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85(2):291–320

    Article  PubMed  CAS  Google Scholar 

  9. Harrer JM, Haghighi K, Kim HW, Ferguson DG, Kranias EG (1997) Coordinate regulation of SR Ca(2+)-ATPase and phospholamban expression in developing murine heart. Am J Physiol 272(1 Pt 2):H57–66

    PubMed  CAS  Google Scholar 

  10. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37(2):279–289

    Article  PubMed  CAS  Google Scholar 

  11. Hasenfuss G, Reinecke H, Studer R, Meyer M, Pieske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    Article  PubMed  CAS  Google Scholar 

  12. Hoit BD, Khoury SF, Kranias EG, Ball N, Walsh RA (1995) In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res 77(3):632–637

    Article  PubMed  CAS  Google Scholar 

  13. Kadambi VJ, Koss KL, Grupp IL, Kranias EG (1998) Phospholamban modulates murine atrial contractile parameters and responses to beta-adrenergic agonists. J Mol Cell Cardiol 30(7):1275–1284

    Article  PubMed  CAS  Google Scholar 

  14. Kadambi VI, Ball N, Kranias EG, Walsh RA, Hoit BD (1999) Modulation of force-frequency relation by phospholamban in genetically engineered mice. Am J Physiol 276(6 Pt 2):H2245–2250

    PubMed  CAS  Google Scholar 

  15. Kadambi VI, Kranias EG (1997) Phospholamban: a protein coming of age. Biochem Biophys Res Commun 239(1):1–5

    Article  PubMed  CAS  Google Scholar 

  16. Kadambi VJ, Kranias EG (1998) Genetically engineered mice: model systems for left ventricular failure [see comments]. J Card Fail 4(4):349–361

    Article  PubMed  CAS  Google Scholar 

  17. Kadambi VJ, Ponniah S, Harrer IM, Hoit BD, Dorn GW 2nd, Walsh RA, Kranias EG (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539

    Article  PubMed  CAS  Google Scholar 

  18. Kimura Y, Kurzydlowski K, Tada M, MacLennan DH (1997) Phospholamban inhibitory function is activated by depolymerization. J Biol Chem 272(24):15061–15064

    Article  PubMed  CAS  Google Scholar 

  19. Kiss E, Edes I, Sato Y, Luo W, Liggett SB, Kranias EG (1997) beta-Adrenergic regulation of cAMP and protein phosphorylation in phospholamban-knockout mouse hearts. Am J Physiol 272(2 Pt 2):H785–790

    PubMed  CAS  Google Scholar 

  20. Koss KL, Grupp IL, Kranias EG (1997) The relative phospholamban and SERCA2 ratio: a critical determinant of myocardial contractility. Basic Res Cardiol 92(Suppl 1):17–24

    Article  PubMed  CAS  Google Scholar 

  21. Koss KL, Ponniah S, Jones WK, Grupp IL, Kranias EG (1995) Differential phospholamban gene expression in murine cardiac compartments. Molecular and physiological analyses [published erratum appears in Circ Res (1995); 77(5):1036]. Circ Res 77(2):342–353

    Article  PubMed  CAS  Google Scholar 

  22. Kranias EG, Solaro RJ (1982) Phosphorylation of troponin I and phospholamban during catecholamine stimulation of rabbit heart. Nature 298(5870):182–184

    Article  PubMed  CAS  Google Scholar 

  23. Lalli J, Harrer JM, Luo W, Kranias EG, Paul RJ (1997) Targeted ablation of the phospholamban gene is associated with a marked decrease in sensitivity in aortic smooth muscle. Circ Res 80(4):506–513

    Article  PubMed  CAS  Google Scholar 

  24. Li L, Chu G, Kranias EG, Bers DM (1998) Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J Physiol 274(4 Pt 2):H1335–1347

    PubMed  CAS  Google Scholar 

  25. Lorenz JN, Kranias EG (1997) Regulatory effects of phospholamban on cardiac function in intact mice. Am J Physiol 273(6 Pt 2):H2826–2831

    PubMed  CAS  Google Scholar 

  26. Luo W, Chu G, Sato Y, Zhou Z, Kadambi VI, Kranias EG (1998) Transgenic approaches to define the functional role of dual site phospholamban phosphorylation. J Biol Chem 273(8):4734–4739

    Article  PubMed  CAS  Google Scholar 

  27. Luo W, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG (1994) Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ Res 75(3):401–409

    Article  PubMed  CAS  Google Scholar 

  28. Luo W, Wolska BM, Grupp IL, Harrer IM, Haghighi K, Ferguson DG, Slack JP, Grupp G, Doetschman T, Solaro RJ, Kranias EG (1996) Phospholamban gene dosage effects in the mammalian heart. Circ Res 78(5):839–847

    Article  PubMed  CAS  Google Scholar 

  29. MacLennan DH, Toyofuku T, Kimura Y (1997) Sites of regulatory interaction between calcium ATPases and phospholamban. Basic Res Cardiol 92(Suppl 1):11–15

    Article  PubMed  CAS  Google Scholar 

  30. Masaki H, Sato Y, Luo W, Kranias EG, Yatani A (1997) Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes. Am J Physiol 272(2 Pt 2):H606–612

    PubMed  CAS  Google Scholar 

  31. McKenna E, Smith JS, Coll KE, Mazack EK, Mayer EJ, Antanavage J, Wiedmann RT, Johnson RG Jr (1996) Dissociation of phospholamban regulation of cardiac sarcoplasmic reticulum Ca2+ ATPase by quercetin. J Biol Chem 271(40):24517–24525

    Article  PubMed  CAS  Google Scholar 

  32. Mittmann C, Eschenhagen T, Scholz H (1998) Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc Res 39(2):267–275

    Article  PubMed  CAS  Google Scholar 

  33. Morgan JP (1991) Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325(9):625–632

    Article  PubMed  CAS  Google Scholar 

  34. Pieske B, Kretschmann B, Meyer M, Holubarsch C, Weirich J, Posival H, Minami K, Just H, Hasenfuss G (1995) Alterations in intracellular calcium handling associated with the inverse force-frequency relation in human dilated cardiomyopathy. Circulation 92(5):1169–1178

    Article  PubMed  CAS  Google Scholar 

  35. Santana LF, Kranias EG, Lederer WJ (1997) Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. J Physiol (Lond) 503(Pt 1):21–29

    Article  CAS  Google Scholar 

  36. Simmerman HK, Jones LR (1998) Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev 78(4):921–947

    PubMed  CAS  Google Scholar 

  37. Slack JP, Grupp IL, Ferguson DG, Rosenthal N, Kranias EG (1997) Ectopic expression of phospholamban in fast-twitch skeletal muscle alters sarcoplasmic reticulum Ca2+ transport and muscle relaxation. J Biol Chem 272(30):18862–18868

    Article  PubMed  CAS  Google Scholar 

  38. Slack JP, Grupp IL, Luo W, Kranias EG (1997) Phospholamban ablation enhances relaxation in the murine soleus. Am J Physiol 273(1 Pt 1):C1–6

    PubMed  CAS  Google Scholar 

  39. Slack JP, Grupp IL, Tilgmann C, Luo W, Tamura T, Kranias EG (1997) Effects of age on the hyperdynamic cardiac function of phospholamban knockout mice. Circulation (96):1–179 (abstr)

    Google Scholar 

  40. Sutliff RL, Hoying JB, Kadambi VJ, Kranias EG, Paul RJ (1999) Phospholamban is present in endothelial cells and modulates endothelium-dependent relaxation. Evidence from phospholamban gene-ablated mice. Circ Res 84(3):360–364

    Article  PubMed  CAS  Google Scholar 

  41. Wolska BM, Stojanovic MO, Luo W, Kranias EG, Solaro RJ (1996) Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracel-lular Ca2+. Am J Physiol 271(1 Pt 1):C391–397

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, A.G., Kranias, E.G. (2000). Genetic approaches to elucidate the regulatory role of phospholamban in the heart. In: Hasenfuss, G., Marbán, E. (eds) Molecular Approaches to Heart Failure Therapy. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57710-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57710-9_4

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63332-4

  • Online ISBN: 978-3-642-57710-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics