Skip to main content

Current developments of 18F-labeled PET tracers in oncology

  • Chapter
PET in Clinical Oncology
  • 155 Accesses

Abstract

2-[18F] Fluoro-2-deoxy-D-glucose (2-[18F]FDG or FDG) is by far the most frequently used PET tracer in nuclear medical diagnostics. The high sensitivity of FDG PET to detect oncologic disease reflects an increased rate of glycolysis or/and glucose transport in most neoplasms relative to normal tissues. However, from a biochemical point of view FDG is not an ideal means of diagnosis because both normal and neoplastic cells metabolize glucose. As the metabolism of a tumor cell does not generally differ from that of a normal cell, other metabolic oncologic tracers also cannot be judged by exclusivity (i.e., accumulation solely in the tumor cell, no accumulation in normal cells) either. Furthermore, the metabolic rate, i.e., glucose consumption, is not a sensitive parameter in characteristically slow growing neoplasms, such as prostate cancer. Thus, tracers based on other biochemical concepts are valuable tools in nuclear medicinal diagnosis (for an overview see [120]). The development of the adequate selective tracers, which will allow deeper insight to tumor biochemistry from outside the human body using PET, is one of the most active areas in current radiopharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alauddin MM, Conti PS, Lever JR et al. (1996) Synthesis of F-18 9-[(3-fluoro-l-hydroxy2-propoxy)-methyl]guanine (FHPG) for in vivo imaging of viral and gene therapy with PET. J Nucl Med 37:193P (abstr.)

    Google Scholar 

  2. Alauddin MM, Raman RK, Kundu R et al. (1997) Evaluation of F-18 9-[(3-fluoro-l-hydroxy-2-propoxy)-methyl]guanine (F-18 FHPG) in HT-29 cells. J Nucl Med 38:176P (abstr)

    Google Scholar 

  3. Alauddin MM, Conti PS (1998) Synthesis and preliminary evaluation of 9-(4–18Ffluor-3-hydroxymethylbutyl)guanine (18F-FHBG): a new potential imaging agent for viral infection and gene therapy using PET. Nucl Med Biol 25:175–180

    Article  CAS  PubMed  Google Scholar 

  4. Bading JR, Alauddin MM, Fissekis JH et al. (1997) Pharmacokinetics of F-18fluorohydroxypropoxymethylguanine (FHPG) in primates. J Nucl Med 38:43P (abstr)

    Google Scholar 

  5. Barrio JR, Namavari N, Phelps ME, et al. (1996) Regioselective fluorination of substituted guanines with dilute F2: a facile entry of 8-fluoroguanine derivatives. J Org Chem 61:6084–6085

    Article  CAS  PubMed  Google Scholar 

  6. Barrio JR, Namavari N, Satyamurthy A et al. (1996) 8-[F-18]fluoroacyclovir: an in vivo probe for gene expression with PET. J Nucl Med 37:193P (abstr.)

    Google Scholar 

  7. Berding G, Burchert W, van den Hoff J et al. (1995) Evaluation of the incorporation of bone grafts used in maxillofacial surgery with [18F]fluoride ion and dynamic positron emission tomography. Eur J Nucl Med 22:1133–1140

    Article  CAS  PubMed  Google Scholar 

  8. Biskupiak JE, Rasey JS, Martin GV et al. (1993) Synthesis of 4-substituted misonidazole derivatives for imaging hypoxia. J Nucl Med 34:79P (abstr.)

    Google Scholar 

  9. Blau M, Nagler W, Bender MA (1962) Fluorine-18: a new isotope for bone scanning. J Nucl Med 3:332–334

    CAS  PubMed  Google Scholar 

  10. Bodsch W, Coenen HH, Stöcklin G et al. (1988) Biochemical and autoradiographic study of cerebral protein synthesis with F-18 and C-14-fluorophenyla]anine. J Neurochem 50:979–983

    Article  CAS  PubMed  Google Scholar 

  11. Bonasera TA, Pajeau TS, Dehdashti F et al. (1993) Comparison of the hepatic metabolism of 16a-[F-18]fluoroestradiol (FES) and 16ĂŸ-[F-18]fluoromoxesterol (FMOX) utilizing isolated hepatocytes from different species. J Nucl Med 34:49P (abstr)

    Google Scholar 

  12. Bonasera TA, Pajeau TS, Welch MI (1994a) D3FES, a doubly labeled (F-18 and H-2) estrogen receptor ligand with reduced in vitro 17-oxidation as compared to FES. J Nucl Med 35:6P (abstr)

    Google Scholar 

  13. Bonasera TA, O’Neil JP, Choe YS et al. (1994b) Imaging the prostate in baboons with fluorine-18 labeled androgen receptor ligands. J Nucl Med 35:53P (abstr)

    Google Scholar 

  14. Börner AR, MĂ¼hlensiepen H, Hamacher K et al. (1998a) Uptake of cis-4-[18F]-fluoroproline in cultures of hormone sensitive and hormone resistant prostate cancer cells. Eur J Nucl Med 25:952 (abstr)

    Google Scholar 

  15. Börner AR, Hamacher K, Herzog H et al. (1998b) [18F]-fluoroproline biodistribution and first results in patients with renal tumors. Eur J Nucl Med 25:952 (abstr)

    Google Scholar 

  16. Börner AR, Hamacher K, Herzog H et al. (1999) cis-4-[18F]-fluoroprolne PET - preliminary results in patients with urological tumors, Eur J Nucl Med 26:1016

    Google Scholar 

  17. Brix G, Bellemann ME, Haberkorn U et al. (1996) Assessment of the biodistribution and metabolism of 5-fluorouracil as monitored by F-19 MRI and F-18 PET: a comparative animal study. J Nucl Med 37:249P (abstr)

    Google Scholar 

  18. Brown RS, Wahl RL (1993) Overexpression of GLUT-1 glucose transporter in human breast cancer: an immunohistochemical study. Cancer 72:2979–2985

    Article  CAS  PubMed  Google Scholar 

  19. Brown GD, Khan HR, Steel LJ et al. (1993) A practical synthesis of 5-[11F]fluorouracil using HPLC and a study of its metabolic profile in rats. J Labelled Comp Radiopharm 32:521–522

    Google Scholar 

  20. Choe YS, Lidström PJ, Bonasera TA et al. (1995) Bromo-[F-18] fluorination: a radio-fluorination method applied to the synthesis of 1lĂŸ-[F-18]fluoroandrogens and 6a[F18]fluoroprogestins. J Nucl Med 36:39P (abstr)

    Google Scholar 

  21. Clavo AC, Brown RS, Wahl RL (1995) Fluorodesoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36:1625–1632

    CAS  PubMed  Google Scholar 

  22. Coenen HH, Bodsch W, Takahashi K et al. (1986) Synthesis, autoradiography and biochemistry of L-[18F]fluorophenylalanines for probing protein synthesis. Nuklearmedizin (Suppl) 22:600–602

    CAS  Google Scholar 

  23. Coenen HH, Franken K, Metwally S et al. (1986b) Electrophilic radiofluorination of aromatic compounds with [18F]F2 and [18F]CH3CO2F and regioselective preparation of L-p-[’8F]fluorophenylalanine. J Lab Compds Radiopharm 23:1179–1181

    Google Scholar 

  24. Coenen HH, Franken K, Kling P, Stöcklin G (1988) Direct electrophilic fluorination of phenylalanine, tyrosine and dopa. Appl Radiat Isot 39:1243–1250

    Article  CAS  Google Scholar 

  25. Coenen HH, Kling P, Stöcklin (1989) Synthesis and cerebral metabolism of aromatic [F-18]fluoroamino acids. J Lab Compds Radiopharm 26:224–226

    Article  Google Scholar 

  26. Coenen HH, Kling P, Stöcklin G (1989) Cerebral metabolism of L-[18F]fluorotyrosine, a new PET tracer of protein synthesis. J Nucl Med 30:1367–1372

    CAS  PubMed  Google Scholar 

  27. Coenen HH (1993) Biochemistry and evaluation of fluoroamino acids. In: Mazoyer BM, Heiss WD, Comar D (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 109–129

    Chapter  Google Scholar 

  28. Conti PS, Alauddin MM, Fissekis JD et al. (1997) Synthesis of F-18-labeled 5-fluoro2’-deoxy-2’-fluoro-1-ĂŸ-arabinofuranosyluracil ([F-18]FFAU) for PET imaging studies. J Nucl Med 38:177P (abstr)

    Google Scholar 

  29. Crawford EJ, Friedekin M, Wolf AP et al. (1982) 18F-5-fluorouridine, a new probe for measuring the proliferation of tissue in vivo. Adv Enzyme Regul 20:3–22

    Article  PubMed  Google Scholar 

  30. Cutler PD, Dehdashti F, Siegel BA et al. (1996) Investigation of a prostate ligand 16ĂŸ[F-18]fluoro-5a-dihydrotestosterone for staging of prostate carcinoma. J Nucl Med 37:87P

    Google Scholar 

  31. Davenport RJ, Visser GM, Zijlstra S et al. (1995) Facile introduction of the 4-(2[18F]fluoroethylamino) group into thymidine derivatives. A versatile approach towards labeling antisense oligodeoxynucleotides for PET. XIth Int Symp Radiopharm Chem, Proceedings, pp 332–334

    Google Scholar 

  32. Dehdashti F, McGuire AH, Van Brocklin H et al. (1991) Assessment of (21-[18F]fluoro-16a-ethyl-19-norprogesterone as a positron-emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas. J Nucl Med 32:1532–1537

    CAS  PubMed  Google Scholar 

  33. Dimitrakopoulou-Strauss A, Strauss LG, Krems B et al. (1996) Studies of fluorouracil (FU) pharmacokinetics using positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). J Nucl Med 37:257P (abstr)

    Google Scholar 

  34. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P et al. (1998) Intravenous and intraarterial oxygen-15-labeled water and fluorine-18-labeled fluorouracil in patients with liver metastases from colorectal cancer. J Nucl Med 39:465–473

    CAS  PubMed  Google Scholar 

  35. Dimitrakopoulou-Strauss A, Strauss LG, Schlag P et al. (1998) Fluorine-18-fluorouracil to predict therapy response in liver metastases from colorectal cancer. J Nucl Med 39:1197–1202

    CAS  PubMed  Google Scholar 

  36. Dollé F, Kuhnast B, Terrazino S et al. (1997) Fluorine-18 labeled oligodeoxynucleotides for in vivo PET imaging. XIIth Int Symp Radiopharm Chem, Proceedings, pp 4–6

    Google Scholar 

  37. Dougan H, Hobbs JB, Lyster DM et al. (1995) Radiohalogenated DNA aptamers. XIth Int Symp Radiopharm Chem, Proceedings, pp 324–325

    Google Scholar 

  38. Eastman RC, Carson RE, Jackobson KA et al. (1992) In vivo imaging of insulin receptors in monkey using 18F-labeled insulin and positron emision tomography. Diabetes 41:855–860

    Article  CAS  PubMed  Google Scholar 

  39. Fowler JS, Finn RD, Lambrecht RM et al. (1973) The synthesis of 5-[18F]fluorouracil. J Nucl Med 14:63–64

    CAS  PubMed  Google Scholar 

  40. FĂ¼chtner F, Steinbach J, Vorwieger G et al (1999) 3-O-Methyl-6-[F-18]fluoro-L-DOPA - a promising substance for tumor imaging. J Lab Compds Radiopharm 42:267–269

    Google Scholar 

  41. Gambhir SS, Barrio JR, Bauer E et al. (1998) Radiolabeled penciclovir: a new reporter probe with improved imaging properties over ganciclovir for imaging herpes-simplex virus type 1 thymidine kinase reporter gene expression [abstract]. J Nucl Med 39:53P (abstr)

    Google Scholar 

  42. Gambhir SS, Barrio JR, Wu L et al. (1998) Imaging of adenoviral-directed herpes-simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39:2003–2011

    CAS  PubMed  Google Scholar 

  43. Gambhir SS, Barrio JR, Herschman HR et al. (1999) Assays for noninvasive imaging of reporter gene expression. Nucl Med Biol 26:481–490

    Article  CAS  PubMed  Google Scholar 

  44. Germann C, Shields AF, Grierson JR et al. (1998) 5-fluoro-1-(2’-deoxy-2’-fluoro-ĂŸ-Dribofuranosyl)uracil in Morris hepatoma cells expressing the Herpes Simplex Virus thymidine kinase gene. J Nucl Med 39:1418–1423

    CAS  PubMed  Google Scholar 

  45. Grierson JR, Link JM, Mathis CA et al. (1989) A radiosynthesis of fluorine-18-fluoromisonidazole. J Nucl Med 30:343–350

    CAS  PubMed  Google Scholar 

  46. Grierson JR, Shields AF (1995) A strategy for the labeling of [F-18]-3’-deoxy 3’-fluorothymidine: [F-18]FLT. XIth Int Symp Radiopharm Chem, Proceedings, pp 606–607

    Google Scholar 

  47. Grierson JR, Shields AF, Eary JF (1997) Development of a radiosynthesis for 3’-[F-18] fluoro-3’-deoxynucleosides. XIIth Int Symp Radiopharm Chem, Proceedings, pp 6062

    Google Scholar 

  48. Grierson JR, Patt M (1999) Synthesis of PET-tracers for the detection of hypoxia. In: Machulla H-J (ed) Imaging of Hypoxia. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 75–84

    Google Scholar 

  49. Guhlke S, Wester H-J, Bruns Ch et al. (1994) (2-[18F]fluoropropionyl-(D)phel)-octreotide, a potential radiopharmaceutical for quantitative somatostatin receptor imaging with PET: synthesis, radiolabeling, in vitro validation and biodistribution in mice. Nucl Med Biol 21:819–825

    Article  CAS  PubMed  Google Scholar 

  50. Hamacher K, Coenen HH, Stöcklin G (1986) Efficient stereospecific synthesis of no-carrier-added 2-[18F]fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27:235–238

    CAS  PubMed  Google Scholar 

  51. Hamacher K, Stöcklin G (1995) Synthesis of n.c.a. (2S,4R)-4-[18F]ftuoroproline: a potential amino acid for PET measurements of procollagen and matrix protein synthesis. XIth Int Symp Radiopharm Chem, Proceedings, pp 175–176

    Google Scholar 

  52. Hamacher K, Herz M, Truckenbrodt R et al. (1996) 4-[F-18]fluoroproline: a potential tracer for collagen synthesis. Radiosynthesis and biological evaluation. J Nucl Med 37:41P (abstr)

    Google Scholar 

  53. Hamacher K (1999) Synthesis of n.c.a. cis-and trans-4-[F-18]fluoropraline, radiotracers for PET investigation of disordered matrix protein synthesis. J Lab Compds Radiopharm 42:1135–1144

    Article  CAS  Google Scholar 

  54. Hawkins RA, Choi Y, Huang S-C et al. (1992) Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nuc Med 33:633–642

    CAS  Google Scholar 

  55. Hedberg E, Takechi B, Langstrom B (1995) Oligonucleotides labeled with 1SF-linkers in the 5’-position. XIth Int Symp Radiopharm Chem, Proceedings, pp 335–337

    Google Scholar 

  56. Heiss WD, Wienhard K, Wagner R et al. (1996) F-Dopa as an amino acid tracer to detect brain tumors. J Nucl Med 17:1180–1182

    Google Scholar 

  57. Heiss P, Mayer M, Hertz M (1999) Investigation of transport mechanism and uptake kinetics of 0-(2-[F-18]fluoroethyl)-L-tyrosine in vitro and in vivo. J Nucl Med 40:1368–1373

    Google Scholar 

  58. Hertz M, Nguyen N, Egert S et al. (1997) 1,3,4,6-tetra-acetyl-2-[F-18]-2-deoxy-D-glucose: biochemical and kinetic studies in the isolated rat heart. XIIth Int Symp Radiopharm Chem, Proceedings, pp 707–709

    Google Scholar 

  59. Higashi T, Tarnaki N, Torizuka T et al. (1998) FDG uptake, GLUT-1 glucose transporter and cellularity in human pancreatic tumors. J Nucl Med 39:1727–1735

    CAS  PubMed  Google Scholar 

  60. Inoue T, Yang N, Oriuchi S et al. (1996) Positron emission tomography with F-18 fluorotamoxifen in patients with breast cancer. J Nucl Med 37:86P (abstr)

    Google Scholar 

  61. Inoue T, Tomiyoshi K, Higuichi T et al. (1998) Biodistribution studies on L-3-[fluorine-18]fluoro-a-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med 39:663–667

    CAS  PubMed  Google Scholar 

  62. Inoue T, Shibasaki T, Oriuchi N et al. (1999) F-18-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med 40:399–405

    CAS  PubMed  Google Scholar 

  63. Ishiwata K, Kubota K, Murakami M et al. (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo. J Nucl Med 34:1936–1943

    CAS  PubMed  Google Scholar 

  64. Ito H, Hatzazawa J, Murakami M (1995) Aging effect on neutral amino acid transport at the blood brain barrier measured with L-[2-18F]fluorophenylalanine and PET. J Nucl Med 35:1232–1237

    Google Scholar 

  65. Jacob R, Rösch F, Mann W (1998) 18F-Fluorethyltyrosin (FET) Positronen-EmissionsTomographie zum Nachweis von Plattenepithelkarzinomen and deren Metastasen im Kopf-Hals-Bereich. Personal communication

    Google Scholar 

  66. Jagoda E, Aloj L, Seidel J et al. (1997) The biodistribution of a F-18 labeled derivative of vasoactive intestinal peptide (dVIP) in a xenograft mouse model of breast cancer. J Nucl Med 38:239P (abstr)

    Google Scholar 

  67. Jeong JM, Yang DJ, Chang YS et al. (1997) Efficient radiosynthesis and biodistribution of 2’-deoxyarabino-2ĂŸ-F-18–3’,5’,6’-triacetyladenine in tumor-bearing rodents: a prodrug of fluoroadenosine for PET assessment of proliferation. J Nucl Med 38:177P (abstr.)

    Google Scholar 

  68. Jeong JM, Lee YJ, Kim C et al. (1997) Simple synthesis of [F-18]2’-fluoro-3’,5’-di-Oacetyl-2’-deoxyarabino-6-N-acetyladenine for detecting tumors: a prodrug of fluoroadenosine. XIIth Int Symp Radiopharm Chem, Proceedings, pp 23

    Google Scholar 

  69. Jeong JM, Lee YJ, Kim C et al. (1997) PET imaging agents for hypoxic tumor: F-18 labeled nitroimidazole analogues. XIIth Int Symp Radiopharm Chem, Proceedings, pp 349–350

    Google Scholar 

  70. Jerabek PA, Dischino DD, Kilbourn MR et al. (1984) Synthesis of fluorine-18 labeled 1-(2-nitro-l-imidazoly1)-3-fluoro-2-propanol: a hypoxic cell radiosensitizer. J Label Comp Radiopharm 21:1234

    Google Scholar 

  71. Jerabek PA, Patrick TB, Kilbourn MR et al. (1986) Synthesis and biodistribution of 18F-labeled fluoronitroimidazoles: potential in vivo markers of hypoxic tissue. Int J Appl Radiat Isot A37:599–605

    Google Scholar 

  72. Jones HA, Hamacher K, Hill AA et al. (1997) PET-Messung der in vivo Aufnahme von 4-[18F]Fluor-L-Prolin nach Induktion einer Lungenfibrose im Kaninchen. NuklMed 36:A80 (abstr)

    Google Scholar 

  73. Kaufmann S (1961) The enzymatic conversion of 4-fluorophenylalanine to tyrosine. Biochim Biophys Acta 61:619–621

    Article  Google Scholar 

  74. Katzenellenbogen JA, Carlson KE, Heimann DF et al. (1980) Receptor-binding radio-pharmaceuticals for imaging breast tumors: estrogen-receptor interactions and selectivity of tissue uptake of halogenated estrogen analogs. J Nucl Med 21:550–558

    CAS  PubMed  Google Scholar 

  75. Kim CG, Yang DJ, Tansey W et al. (1995) Assessment of tumor proliferation rate with F-18 labeled adenosine and uracil. J Nucl Med 36:148P (abstr)

    Google Scholar 

  76. Kirschbaum KS, Bonasera TA, Buckman BO et al. (1995) [F-18] progestins: synthesis and tissue distribution of 21-fluoroprogestin-16a,17c-furan ketals and acetals: potential breast tumor imaging agents. J Nucl Med 36:39P (abstr)

    Google Scholar 

  77. Koh W-J, Rasey JS, Evans ML et al. (1993) Imaging of hypoxia and reoxygenation in human tumors with [F-18]fluoromisonidazole. J Nucl Med 34:21P (abstr)

    Google Scholar 

  78. Koh W-J, Bergman KS, Rasey JS et al. (1995) Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. Int J Rad Onc Biol Phys 33:391–398

    Article  CAS  Google Scholar 

  79. Kubota K, Ishiwata K, Kubota R et al. (1995) F-18fluorophenylalanine, possibility for tumor imaging compared with L-methionine. J Nucl Med 36:72P (abstr)

    Google Scholar 

  80. Kubota K, Ishiwata K, Kubota R et al. (1996) Feasibility of fluorine-18-fluorophenylalaine for tumor imaging compared with carbon-1 l-L-methionine. J Nucl Med 37:320–325

    CAS  PubMed  Google Scholar 

  81. Kubota K, Tada M, Yamada S et al. (1997) Intra-tumoral distribution of F-18 fluoromisonidazole, FDG and methionine. J Nucl Med 38:148P (abstr)

    Google Scholar 

  82. Lemaire C (1993) Production of L-[F-18]fluoro amino acids for protein synthesis. Overview and recent developments in nucleophilic syntheses. In: Mazoyer BM, Heiss WD, Comar D (eds) PET Studies on Amino Acid Metabolism and Protein Synthesis. Kluwer Academic Publishers, dordrecht, The Netherlands, pp 89–108

    Chapter  Google Scholar 

  83. Lemaire C, Guillouet S, Plenevaux A et al (1999) The synthesis of 6-[F-18]fluoroL-DOPA by chiral catalytic phase transfer alkylation. J Lab Compds Radiopharm 42:113–115

    Article  Google Scholar 

  84. Lim J-L, Berridge MS (1994) Synthesis of [F-18] fluoroetanidazole for hypoxia imaging evaluation. J Nucl Med 35:6P (abstr)

    Google Scholar 

  85. Liu A, Dence CS, Welch MJ et al. (1992) Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer. J Nucl Med 33:724–734

    CAS  PubMed  Google Scholar 

  86. Mazoyer BM, Heiss WD, Comar D (1993) PET Studies on Amino Acid Metabolism and Protein Synthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  87. Machulla H-J (ed) (1999) Imaging of Hypoxia. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  88. Machulla H-J, Blocher A, Kuntzsch M et al. (2000) Simplified labeling approach for synthesizing 3’-deoxy-3’-[18F]fluorothymidine. J Lab Comp Radiopharm, in press

    Google Scholar 

  89. Maxwell AP, MacManus MP, Gardiner TA (1989) Misonidazole binding in murine liver tissue: a marker for cellular hypoxia in vivo. Gastroenterology 97:1300–1303

    CAS  PubMed  Google Scholar 

  90. McCarthy TJ, Dence CS, Welch MJ (1993) Application of microwave heating to the synthesis of [18F]fluoromisonidazole. Appl Radiat Isot 44:1129–1132

    Article  CAS  PubMed  Google Scholar 

  91. Mintun MA, Welch MJ, Siegel BA et al. (1988) Breast cancer: PET imaging of estrogen receptors. Radiology 169:45–52

    CAS  PubMed  Google Scholar 

  92. Monclus M, Luxen A, Van Naemen J et al. (1995) Development of PET radiopharmaceuticals for gene therapy: synthesis of 9-(1-[18F]fluoro-3-hydroxy-2-propoxy) methyl-guanine. XIth Int Symp Radiopharm Chem, Proceedings, pp 193–195

    Google Scholar 

  93. Monclus M, Luxen A, Cool V et al. (1997) Synthesis of (R)- and (S)-9-{(3-[18F] fluoro-l-hydroxy-propoxy)methyl}guanine: radiopharmaceuticals for gene therapy. XIIth Int Symp Radiopharm Chem, Proceedings, pp 20–22

    Google Scholar 

  94. Monclus M, Luxen A, Cool V et al. (1997) Development of a positron emission tomography radiopharmaceutical for imaging thymidine kinase gene expression: synthesis and in vitro evaluation of 9-{3-[18F]fluoro-l-hydroxy-2-propoxy)-methyl} guanine. Bioorganic Med Chem Lett 7:1879–1882

    Article  CAS  Google Scholar 

  95. Senekowitch-Schmidtke, personal communication

    Google Scholar 

  96. Moody TW, Leyton J, Unsworth E et al. (1998) (Arg(15),Arg(21))VIP: evaluation of biological activity and localization to breast cancer tumors. Peptides 19:585–592

    Article  CAS  PubMed  Google Scholar 

  97. Moresco RM, Casati R, Lucignani G et al. (1994) Systemic and cerebral kinetics of 16a[F-18]fluoro-17ĂŸ-estradiol. J Nucl Med 35:255P (abstr.)

    Google Scholar 

  98. Murakami M, Takahashi K, Kondo Y et al. (1987) The comparative snthesis of 18Ffluorophenylalanine by electrophilic substitution with 18F-F2 and 1 F-AcOF. J Lab Comp Radiopharm 25:1367–1376

    Google Scholar 

  99. Murakami M, Takahashi K, Kondo Y et al. (1988) 2-F-18-phenylalanine and 3-F-18-tyrosine - synthesis and preliminary data of tracer kinetics. J Lab Compds Radiopharm 25:773–782

    Article  CAS  Google Scholar 

  100. Murakami M, Takahashi K, Kondo Y et al. (1989) The slow metabolism of L-2-F-18fluorophenylalanine in rat. J Lab Compds Radiopharm 27:245–255

    Article  CAS  Google Scholar 

  101. Nakamichi H, Murakami M, Miura S et al. (1994) Does the anabolic metabolism of L[2-18F]fluorophenylalanine and L-[2,6-3H]phenylalanine differ in the cerebrum and the cerebellum? Nucl Med Biol 21:959–962

    Article  CAS  PubMed  Google Scholar 

  102. Ogawa T, Miura S, Murakami M et al. (1996) Quantitative evaluation of neutral amino acid transport in cerebral gliomas using positron emission tomography and fluorine-18 fluorophenylalanine. Eur J Nucl Med 23:889–895

    Article  CAS  PubMed  Google Scholar 

  103. Pajeau TS, Welch MJ, Bonasera TA et al. (1993) The radiotoxicity of 16a[F-18]fluorostradiol ([F-l8]FES) in cell culture. J Nucl Med 34:160P (abstr)

    Google Scholar 

  104. Pan D, Gambhir SS, Phelps ME et al. (1997) Synthesis of fluorinated nucleosides for antisense oligodeoxynucleotide imaging with PET. J Nucl Med 38:134P (abstr)

    Google Scholar 

  105. Patt M, Knutzsch M, Machulla H-J (1999) Preparation of [18F]fluoromisonidazole by nucleophilic substitution on THP-protected precursors: yield dependence on reaction parameters. J Radioanal Nucl Chem 240:925–927

    Article  CAS  Google Scholar 

  106. Patt M, Kumar P, Wiebe LI, Machulla H-J (1999) [18F]fluoroazomycinarabinosid (FAZA) ein neuer Radiotracer zur Bestimmung von Gewebehypoxien. Nuklearmedizin 38:A22 (abstr.)

    Google Scholar 

  107. Piert M, Machulla H-J, DiĂŸmann PD et al. (1998) Simple SUV analysis of F-18-fluoromisonidazole uptake allows accurate measurement of regional liver hypoxia. Eur J Nucl Med 25:P981 (abstr.)

    Google Scholar 

  108. Piert M, Zittel TT, Machulla H-J et al. (1998) Blood flow measurements with [15O]H20 and [18F]fluoride ion PET in porcine vertebrae. J Bone Miner Res 13:1328–1336

    Article  CAS  PubMed  Google Scholar 

  109. Piert M, Machulla H-J, Becker G et al. (1999) Introducing 18F-misonidazole PET for localization and quantification of pig liver hypoxia. Eur J Nucl Med 26:95–109

    Article  CAS  PubMed  Google Scholar 

  110. Rasey JS, Koh W-J, Grierson JR et al. (1989) Radiolabeled fluoromisonidazole as an imaging agent for tumor hypoxia. Int J Rad Onc Biol Phys 17:985–991

    Article  CAS  Google Scholar 

  111. Rasey JS, Koh W-J, Peterson LM et al. (1996) Evaluation of tumor hypoxic fraction using tumor: muscle ratios of [F-18]FMISO uptake. J Nucl Med 37:235P (abstr)

    Google Scholar 

  112. Schiepers C, Broos P, Nuyts J, et al. (1994) Positron emission tomography using F-18 fluoride for the evaluation of femoral head osteonecrosis. Eur J Nucl Med 21:762 (abstr)

    Google Scholar 

  113. Shai Y, Kirk KL, Channing MA et al. (1989) F-18-labeled insulin: a prosthetic group methodology for incorporation of a positron emitter into peptides and proteins. Biochemistry 28:4801–4806

    Article  CAS  PubMed  Google Scholar 

  114. Shields AF, Grierson JR (1996) Labeled AZT and FLT for imaging cell proliferation. J Nucl Med 37:240P (abstr)

    Google Scholar 

  115. Shields AF, Grierson JR (1997) F-18 FLT can be used to image cell proliferation in vivo. J Nucl Med 38:249P (abstr)

    Google Scholar 

  116. Shields AF, Grierson JR, Dohmen BM et al. (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography (PET). Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  117. Shoup TM, Olson J, Hoffman JM et al. (1999) Synthesis and evaluation of [F-18]1amino-3-fluorocyclobutane-l-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    CAS  PubMed  Google Scholar 

  118. Solbach M, Machulla H-J (1995) Yield dependence of [18F]FMISO on different reaction parameters. XIth Int Symp Radiopharm Chem, Proceedings, pp 199–201

    Google Scholar 

  119. Stöcklin G, Wester HJ (1998) Strategies for radioligand development. Peptides for tumor imaging. In: GulyĂ¡s B, MĂ¼ller-Gärtner HW (eds) Positron Emission Tomography: A Critical Assessment of Recent Trends. Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 57–90

    Chapter  Google Scholar 

  120. Strauss LG, Conti PS (1991) The application of PET in clinical oncology. J Nucl Med 32:623–648

    CAS  PubMed  Google Scholar 

  121. Tada M, Iwata R, Sugiyama H et al. (1996) A concise one-pot synthesis of [18F]fluoromisonidazole from (2R)-(-)-glycidyl tosylate. J Label Comp Radiopharm 38:771–774

    Article  CAS  Google Scholar 

  122. Tewson TJ, Mankoff DA, Eary JF (1997) Metabolism and clearance of [F-18]16afluoroestradiol (FES) in patients. J Nucl Med 38:176P (abstr)

    Google Scholar 

  123. Tewson TJ (1997) Synthesis of [F- 18]fluoroethanidazole - a new nitroimidazole tracer of hypoxia. XIIth Int Symp Radiopharm Chem, Proceedings, pp 56–576

    Google Scholar 

  124. Tomiyoshi K, Amed K, Muhammed S (1997) Synthesis of isomers of F-18-labelled amino acid radiopharmaceutical: position-2- and 3-L-18F-alpha-methyltyrosine using a separation and purification system. Nucl Med Commun 18:169–175

    Article  CAS  PubMed  Google Scholar 

  125. Vaidyanathen G, Zalutsky MR (1997) Fluorine-18-labeled [Nle(4),D-Phe(7)]-alphaMSH, an alpha-melanocyte stimulating hormone analogue. Nucl Med Biol 24:275–286

    Article  Google Scholar 

  126. Van Brocklin HF, Liu A, Welch MJ et al. (1994) The synthesis of 17 alpha-methyl-substituted estrogens labeled with fluorine-18: potential breast tumor imaging agents. Steroids 59:34–45

    Article  Google Scholar 

  127. Ley M (1983) [F-18]Fluorine labelled amino acids. J Lab Compds Radiopharm 20:453–461

    Article  Google Scholar 

  128. Vaupel P, Kelleher DK, GĂ¼nderoth M (eds) (1995) Tumor Oxygenation. Gustav Fischer Verlag, Stuttgart, Jena, New York

    Google Scholar 

  129. Verhagen A, Luurtsema G, Pesser JW et al. (1991) Preclinical evaluation of a positron emitting progestin (21-18F-fluor-16a-ethyl-19-norprogesterone) for imaging progesterone receptor positive tumours with positron emission tomography. Cancer Lett 59:125–132

    Article  CAS  PubMed  Google Scholar 

  130. Vine EN, Young D, Vine WH et al. (1979) An improved synthesis of 5-[18F]fluoruracil. Int J Appl Radiat Isot 30:401–404

    Article  CAS  PubMed  Google Scholar 

  131. Vos MG, Visser GM, Pike VW et al. (1995) Synthesis of 5’-deoxy-5’-[18F]-fluoro-thymidine (5’-[18F]FDT). A bifunctional agent to investigate DNA synthesis rate and a useful tool as a terminal building unit in antisense ODN labelling for PET. XIth Int Symp Radiopharm Chem, Proceedings, pp 338–340

    Google Scholar 

  132. Vyska K, Profant M, Schuier F et al. (1984) In vivo determination of kinetic parameters for glucose influx and efflux by means of 3-O-11C-methyl-D-glucose, 18F-3-deoxyfluoro-D-glucose and dynamic positron emission tomography; theory, methods and normal values. In: Knapp WH, Vyska K (eds) Current Topics in Tumor Cell Physiology and Positron Emission Tomography. Springer Verlag, Heidelberg, New York, pp 37–60

    Chapter  Google Scholar 

  133. Waki A, Fujibayashi Y, Magata Y et al. (1996) A new strategy for selective detection of hexokinase activity in tumor cells: lipophilic but metabolizable glucose analogue, [F18] acetyl-FDG. J Nucl Med 37:192P (abstr)

    Google Scholar 

  134. Waki A, Yonekura Y, Sadato N et al. (1997) [18F]-AFDG, a 2-deoxyglucose analogue with high lipophilicity and glucose transporter-independent uptake; in vitro and in vivo characterization. XIIth Int Symp Radiopharm Chem, Proceedings, pp 671–673

    Google Scholar 

  135. Waki A, Kato H, Yano R et al. (1998a) The importance of glucose transporter activity as the rate-limiting step of 2-deoxyglucose uptake in tumor cells in vitro. Nucl Med Biol 25:593–597

    Article  CAS  Google Scholar 

  136. Waki A, Fujibayashi Y, Yokoyama A (1998b) Recent advances in the analysis of the characteristics of tumors on FDG uptake. Nucl Med Biol 25:589–592

    Article  Google Scholar 

  137. Waki A, Fujibayashi Y, Magata Y et al. (1998c) Glucose transporter protein-independent tumor cell accumulation of fluorine-18-AFDG, a lipophilic fluorine-18-FDG analog. J Nucl Med 39:245–250

    CAS  Google Scholar 

  138. Weber W, Wester HJ, Grosu AL et al. (1999) O-(2’-[F-18]fluoroethyl)-L-tyrosine and [methyl-C-11l-L-methionine uptake in brain tumors: a comparative PET study. Eur J Nucl Med (in press)

    Google Scholar 

  139. Welch MJ, Bonasera TA, Sherman EIC et al. (1995) [F-18]fluorodeoxyglucose (FDG) and 16a-[F-18]fluoroestradiol-17,3 (FES) uptake in estrogen-receptor (ER)-rich tissues following tamoxifen treatment: a preclinical study. J Nucl Med 36:39P (abstr.)

    Google Scholar 

  140. Wester HJ, Hamacher K, Stöcklin G (1996) A comparative study of nca fluorine-18–1abeling of proteins via acylation and photochemical conjugation. Nucl Med Biol 23:365–372

    Article  CAS  PubMed  Google Scholar 

  141. Wester HJ, Brockmann J, Rösch F et al. (1997) PET-pharmacokinetics of 18F-octreotide: a comparison with 68Ga-DFO- and 86Y-DTPA-octreotide. Nucl Med Biol 24:275–286

    Article  CAS  PubMed  Google Scholar 

  142. Wester HJ, Hertz M, Weber W et al. (1999) Synthesis and radiopharmacology of O-(2[18F]fluoroethyl)-L-tyrosine ([18F]FET) for tumor imaging. J Nucl Med 40:205–212

    CAS  PubMed  Google Scholar 

  143. Wester HJ, Hertz M, Senekowitsch-Schmidtke R et al. (1999) Preclinical evaluation of 4-[18F]fluoroprolines: diastereomeric effects on metabolism and uptake in mice. Nucl Med Biol 26:259–265

    Article  CAS  PubMed  Google Scholar 

  144. Wienhard K, Herholz K, Coenen HH et al. (1991) Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nucl Med 32:1338–1346

    CAS  PubMed  Google Scholar 

  145. Yamamoto T, Seino Y, Fukumoto A et al. (1990) Overexpression of facilitated glucose transporter genes in human cancer. Biochem Biophys Res Commun 170:223–230

    Article  CAS  PubMed  Google Scholar 

  146. Zheng L, Ma C, McCarthy TJ et al. (1994) Synthesis of 1-(2-nitro-l-imidazolyl-3-(2- [F-181-fluoromethyl-1-aziridinyl)-2-propanol, a potential hypoxic radiosensitizer for PET. J Nucl Med 35:73P (abstr)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rösch, F., Wester, HJ., DeGrado, T.R. (2000). Current developments of 18F-labeled PET tracers in oncology. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_7

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics