Skip to main content

Endocrine/neuroendocrine tumors

  • Chapter
  • 149 Accesses

Abstract

Development of nuclear medicine is closely related to examinations of endocrine active organs. 128lodine was one of the first artificially produced radioisotopes by Fermi in the year 1934. This isotope had already been used for studies of iodine metabolism and for experiments on the physiology of the thyroid, in 1938. In 1939 131iodine was applied in humans for the first time [14] and basic research on scintigraphic application had already been reported in 1951 [6]. While 131iodine is still used in nuclear medicine because of its property as a β-emitter, it has lost its importance for diagnosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams HL, Spiro R, Goldstein N (1950) Metastases in carcinoma: analysis of 1000 autopsied cases. Cancer 3:74–85

    Article  PubMed  CAS  Google Scholar 

  2. Ahlstrom H, Eriksson B, Bergstrom M, et al. (1995) Pancreatic neuroendocrine tumors: diagnosis with PET. Radiology 195:333–337

    PubMed  CAS  Google Scholar 

  3. Bergstrom M, Muhr C, Lundberg PO, Langstrom B (1991) PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 32:610–615

    PubMed  CAS  Google Scholar 

  4. Boland GW, Goldberg MA, Lee MJ, et al. (1995) Indeterminate adrenal mass in patients with cancer: evaluation at PET with 2-(F-18)-fluoro-deoxy-D-glucose. Radiology 194:131–134

    PubMed  CAS  Google Scholar 

  5. Bustamante E, Morris HP, Pederson PL (1981) Energy metabolism of tumor cells: requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem 256:8699–8704

    PubMed  CAS  Google Scholar 

  6. Cassen B, Curtis L, Reed C, Libby R (1951) Instrumentation for 131I use in medical studies. Nucleonics 9:46

    Google Scholar 

  7. Farde L, Ehrin E, Eriksson L, et al. (1985) Substituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography. Proc Natl Acad Sci 82:3863–3867

    Article  PubMed  CAS  Google Scholar 

  8. Flier JS, Mueckler MM, Usher P, Lodish HF (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235: 1492–1495

    Article  PubMed  CAS  Google Scholar 

  9. Foidart-Willems J, Depas G, Vivegnis D, et al. (1995) positron emission tomography and radiolabelled octreotide scintigraphy in carcinoid tumors. Eur J Nucl Med 22:635

    Google Scholar 

  10. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP (1978) Metabolic trapping as a principle of radiopharmaceutical design. Some factors responsible for the biodistribution of (18-F) 2 deoxy-2-fluoro-D-glucose. J Nucl Med 19: 1154–1161

    PubMed  CAS  Google Scholar 

  11. Gasparoni P, Rubello D, Ferlin G (1997) Potential role of fluorine-18-deoxyglucose (FDG) positron emission tomography (PET) in the staging of primitive and recurrent medullary thyroid carcinoma. J Endocrinol Invest 20:527–530

    PubMed  CAS  Google Scholar 

  12. Grunwald F, Schomburg A, Bender H, et al. (1996) Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med 23:312–319

    Article  PubMed  CAS  Google Scholar 

  13. Gupta N, Bradfield H (1996) Role of positron emission tomography scanning in evaluating gastrointestinal neoplasms. Sem Nucl Med 26:65–73

    Article  CAS  Google Scholar 

  14. Hamilton, JG, Soley MH (1939) Studies in iodine metabolism by the use of a new radioactive iodine. Amer J Physiol 127:557

    CAS  Google Scholar 

  15. Hatanaka M (1974) Transport of sugars in tumor cell membranes. Biochem Biophys Acta 355:77–104

    PubMed  CAS  Google Scholar 

  16. Joensuu H, Ahonen A, Klemi PJ (1988) 18F-Fluorodeoxyglucose imaging in preoperative diagnosis of thyroid malignancy. Eur J Nucl Med 13:502–506

    Article  PubMed  CAS  Google Scholar 

  17. Joensuu H, Ahonen A (1987) Imaging of metastases of thyroid carcinoma with fluorine-18 fluorodeoxyglucose. J Nucl Med 1987:910–914

    Google Scholar 

  18. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. (1993) Somatostatin receptor scintigraphy with (In- 1 1 1 -DTPA-D-Phe)- and (J-123-Tyr)-Oktreotide: The Rotterdam experience with more than 1000 patients. Eur J Nucl Med 20:716–731

    Article  PubMed  CAS  Google Scholar 

  19. Martineau R, Kohlbacher M, Shaw SN, Amos H (1972) Enhancement of hexoses entry into chick fibroblasts by starvation: differential effect on galactose and glucose. Proc Natl Acad Sci USA 69:3407–3411

    Article  CAS  Google Scholar 

  20. Mueckler MM (1994) Facilitative glucose transporters. Eur J Biochem 219:713–725

    Article  PubMed  CAS  Google Scholar 

  21. Muhr C, Bergstrom M (1991) Positron emission tomography applied in the study of pituitary adenomas. J Endocrinol Invest 14:509–528

    PubMed  CAS  Google Scholar 

  22. Muhr C, Lundberg PO, Antoni G, et al. (1984) The uptake of 11C-labeled bromocriptine and methionine in pituitary tumors studied by positron emission tomography (PET). In: Lamberts, Tilders, van der Veen, et al. (eds) Trends in Diagnosis and Treatment of Pituatary Adenomas. Amsterdam: Free University Press, pp 151–155

    Google Scholar 

  23. Murakami T, Nishiyama T, Shirotani T, et al. (1992) Type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. J Biol Chem 267:9300–9306

    PubMed  CAS  Google Scholar 

  24. Pauwels EKJ, McCready VR, Stoot JHMB, van Deurzen FP (1998) The mechanism of accumulation of tumour-localising radiopharmaceuticals. Eur J Nucl Med 25:277–305

    Article  PubMed  CAS  Google Scholar 

  25. Reuland P, Handgretinger R, Smykowsky H, et al. (1991) Application of the murine anti-Gd-2 antibody 14.Gd-2a for diagnosis and therapy of neuroblastoma. Nucl Med Biol 18:121–125

    CAS  Google Scholar 

  26. Reuland P, Geiger L, Klingebiel Th, Laniado K, Feine U, Bares R, Niethammer D, Handgretinger R (1996) Clinical impact of the different diagnostic tools for neuroblastoma. Adv Neuroblastoma Res 5:23

    Google Scholar 

  27. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, Benoit T, Foidart-Willems J (1996) Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 23:1641–1674

    Article  PubMed  CAS  Google Scholar 

  28. Shulkin BL, Koeppe RA, Francis IR, et al. (1993) Pheochromocytomas that do not accumulate metaiodobenzylguanidine: localization with PET and administration of FDG. Radiology 186:11–15

    Google Scholar 

  29. Shulkin BL, Sisson JC, Hutchinson RJ (1994) PET FDG studies of neuroblastoma. J Nucl Med 35:135 (abstr.)

    Google Scholar 

  30. Shulkin BL, Wieland DM, Schwaiger M (1992) PET scanning with hydroxyephedrine: an approach to the localization of pheochromocytoma. J Nucl Med 33:1125–1131

    PubMed  CAS  Google Scholar 

  31. Sisson JC, Thompson NW, Ackerman RJ, Wahl RL (1994) Use of 2-(F-181-fluoro-2deoxy-D-glucose PET to locate parathyroid adenomas in primary hyperparathyroidism. Radiology 192:280

    PubMed  CAS  Google Scholar 

  32. Sokoloff L, Reivich M, Kennedy C, et al. (1977) The (14-C)deoxy glucose method for the measurement of local cerebral glucose utilisation: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  33. Vaidyanathan G, Affleck DJ, Zalutsky MR (1995) Validation of 4-(fluorine-18) fluoro-3iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 36:644–650

    PubMed  CAS  Google Scholar 

  34. Wagner NH Jr, Burns HD, Dannals RF, et al. (1983) Imaging dopamine receptors in the human brain by positron emission tomography. Science 221:1264–1266

    Article  PubMed  CAS  Google Scholar 

  35. Wahl RL, Hutchkins GD, Buchsbaum DJ, Liebert M, Grossman HB (1991) 18-F-2deoxy-2-fluoro-deoxyglucose uptake into human tumor xenografts. Cancer 76:1544–1550

    Article  Google Scholar 

  36. Warburg O (1920) Über den Stoffwechsel der Carcinomzelle. Kolin Wochenschr Berl 4:534–536

    Article  Google Scholar 

  37. Warburg O (1931) The metabolism of tumors. Constable, London, pp 75–327

    Google Scholar 

  38. Wieland DM, Wu JL, Brown LE, Mangner TJ, Swanson DP, Beierwaltes WM (1980) Radiolabeled adrenergic neuron blocking agents: adrenomedullary imaging with (131)iodobenzylguanidine. J Nucl Med 21:349–353

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reuland, P., Larson, S.M. (2000). Endocrine/neuroendocrine tumors. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_27

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics