Skip to main content

Renal cell and urothelial cancer

  • Chapter
PET in Clinical Oncology

Abstract

Renal cell cancer (RCC) has an incidence similar to differentiated thyroid cancer or Hodgkin’s disease and comprises approx. 2% of all cancers. More than 90% of these tumors are found in adults with a preference for the 7th and 8th decade of life. The male gender displays an increased incidence of about twice that of females. Over the last 40 years, mortality due to renal cell cancer has been rising at a rate of 2% per year in the developed countries in Europe and North America. This rise and the sex predilection are attributed to the use of tobacco products, the packaging (cardboard) industry, other environmental factors in petroleum and leather industries and exposure to cadmium, asbestos and trichlorethylene [3]. Obesity and chronic kidney failure are other contributing factors which are frequently observed in female renal cell cancer patients. The pathogenesis of renal cell cancer is still largely unclear. The prognosis of this tumor type in adults is rather poor with 5 year survival rates between 36 and 54%. If widespread tumor manifestations are present at admission, the 5-year survival rate decreases to virtually zero. All renal cell cancers are insensitive to chemotherapy with conventional cytostatic drugs and are primarily radiation resistant. Therefore, radical surgical removal of the tumor and solitary metastases are the only ways to achieve full remission. In particular, with lymph node and lung metastases, the eventual prognosis is critically dependent on the radicality of the primary surgical intervention. Additional determinants of prognosis are the size and number of metastases. Current therapeutic options for bone and liver metastases are limited and usually consist of palliation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachor R, Kotzerke J, Gottfried HW, Brandle E, Reske SN, Hautmann R (1996) Positron emission tomography in diagnosis of renal cell carcinoma. Urolog A 35 (2):146–150

    CAS  Google Scholar 

  2. Balfe DM, McClennan BL, Stanley RJ, Weymann PJ, Sagel SS (1982) Evaluation of renal masses considered indeterminate on computed tomography. Radiology 142:421–428

    PubMed  CAS  Google Scholar 

  3. Bell ET (1950) Renal Diseases, 2nd ed. Lea and Felbiger, Philadelphia

    Google Scholar 

  4. Bender H, Schomburg A, Albers P, Ruhlmann J, Biersack HJ (1997) Possible role of FDG-PET in the evaluation of urologic malignancies. Anticancer Res 17:1655–1660

    PubMed  CAS  Google Scholar 

  5. Brock CS, Meikle SR, Price P (1997) Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? Eur J Nucl Med 24:691–705

    PubMed  CAS  Google Scholar 

  6. Budinger TF, Brennan KM, Moses WW, Derenzo SE (1996) Advances in positron emission tomography for oncology. Nucl Med Biol 23:659–667

    Article  PubMed  CAS  Google Scholar 

  7. Campbell SC, Novick AC, Herts B, Fischler DF, Meyer J, Levin HS, Chen RN (1997) Prospective evaluation of fine needle aspiration of small, solid renal masses: accuracy and morbidity. Urology 50:25–29

    Article  PubMed  CAS  Google Scholar 

  8. Chaiken L, Rege S, Hoh C, Choi Y, Jabour B, Juillard G, Hawkins R, Parker (1993) Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 27:455–464

    Article  PubMed  CAS  Google Scholar 

  9. Coleman RE (1991) Single photon emission computed tomography and positron emission tomography in cancer imaging. Cancer 67:1261–1270

    Article  PubMed  CAS  Google Scholar 

  10. Cremerius U, Fabry U, Kroll U, Zimny M, Neuerburg J, Osieka R, Büll U (1999) Klinischer Wert der FDG PET im Therapiemonitoring bei malignen Lymphomen - Resultate einer retrospektiven Studie an 72 Patienten. Nuklearmedizin 38:24–30

    PubMed  CAS  Google Scholar 

  11. Figlin RA, Belldegrun A (1995) Introduction: renal-cell carcinoma. Seminars in Oncology 22:1–2

    Google Scholar 

  12. Fischman AJ, Alpert MN (1993) FDG-PET in oncology: there’s more to it than looking at pictures. J Nucl Med 34:1–6

    Google Scholar 

  13. Francois C, Decaestecker C, Petein M, van Ham P, Peltier A, Pasteels JL, Danguy A, Salmon I, van Velthoven R, Kiss R (1997) Classification strategies for the grading of renal cell carcinomas, based on nuclear morphometry and densitometry. J Pathol 183: 141–150

    Article  PubMed  CAS  Google Scholar 

  14. Glaspy JA, Hawkins R, Hoh CK, Phelps ME (1993) Use of positron emission tomography in oncology. Oncology 7:41–46

    PubMed  CAS  Google Scholar 

  15. Goldberg MA, Mayo-Smith WW, Papanicolaou N, Fischman AJ, Lee MJ (1997) FDG PET characterization of renal masses: preliminary experience. Clin Radiol 52 (7):510–515

    Article  PubMed  CAS  Google Scholar 

  16. Hartman, DS, Aronson S, Frazer H (1991) Current status of imaging indeterminate renal masses. Radiol Clin North Am 29:475–496

    PubMed  CAS  Google Scholar 

  17. Hawkins RA, Hoh C, Glaspy J, Rege S, Choi Y, Phelps ME (1994) Positron emission tomography scanning in cancer. Cancer Invest 12:74–87

    Article  PubMed  CAS  Google Scholar 

  18. Hofmann M, Börner AR, Kühnel G, Knoop BO, Binder L, Dölting J, Knapp WH (2000) Interindividual variance of glucose-6-phosphatase (G-6-Pse) expression in renal cell cancer. Eur J Nucl Med 27(1):104 (abst)

    Google Scholar 

  19. Henschler D, Vamvacas S, Lammert M, Decant W, Kraus B, Thomas B, Ulm K (1995) Increased incidence of renal cell tumors in a cohort of cardboard workers exposed to trichloroethene. Arch Toxicol 69:291–299

    Article  PubMed  CAS  Google Scholar 

  20. Hoh CK, Seltzer MA, Franklin J, deKernion JB, Phelps ME, Belldegrun A (1998) Positron emission tomography in urological oncology. J Urol 159:347–356

    Article  PubMed  CAS  Google Scholar 

  21. Klingel R, Dippold W, Störkel S, Meyer-zum Büschenfelde KH, Köhler H (1992) Expression of differentiation antigens and growth-related genes in normal kidney, autosomal dominant polycystic kidney disease, and renal cell carcinoma. Am J Kidney Dis 19:22–30

    PubMed  CAS  Google Scholar 

  22. Kovacs G, Akhtar M, Beckwith BJ, Bugert P, Cooper CS, Delahunt B, Eble JN, Fleming S, Ljungberg B, Medeiros LJ, Moch H, Reuter VE, Ritz E, Roos G, Schmidt D, Srigley JR, Störkel S, van den Berg E, Zbar B (1997) The Heidelberg classification of renal cell tumours. J Pathol 183:131–133

    Article  PubMed  CAS  Google Scholar 

  23. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T (1992) Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nuc1 Med 33: 1972–1980

    CAS  Google Scholar 

  24. Mankoff DA, Thompson JA, Gold P, Eary JF, Guinee Jr DG, Samlowski WE (1997) Identification of interleukin-2-induced complete response in metastatic renal cell carcinoma by FDG PET despite radiographic evidence suggesting persistent tumor. Am J Roentgenol 169:1046–1050

    Google Scholar 

  25. Miyauchi T, Wahl RL (1996) Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung. Eur J Nucl Med 23:517–523

    Article  PubMed  CAS  Google Scholar 

  26. Moon DH, Maddahi J, Silverman DH, Glaspy JA, Phelps ME, Hoh CK (1998) Accuracy of whole-body fluorine-18-FDG PET for the detection of recurrent or metastatic breast carcinoma. J Nucl Med 39:431–435

    PubMed  CAS  Google Scholar 

  27. Motzer RJ, Bander NH, Nanus DM (1996) Renal-cell carcinoma. N Engl J Med 335 (12):865–875

    Article  PubMed  CAS  Google Scholar 

  28. Müller-Mattheis V, Reinhardt M, Müller-Gärtner HW, Ackermann R (1995) Differenzierung von Raumforderungen der Niere durch die Positronen-Emissionstomographie mit 2-[18F]-2-deoxy-D-glucose (18FDG-PET). Urologe[A](Suppl) 34:103

    Google Scholar 

  29. Reske SN, Bares R, Büll U, Guhlmann A, Moser E, Wannenmacher MF (1996) Clinical value of positron emission tomography (PET) in oncology: results of an interdisciplinary consensus conference. Nucl Med 35:42–52; Update: Moser E, Krause Th (1997) Konsensus Onko-PET. Nucl Med 36:45–46

    Google Scholar 

  30. Shinohara N, Ogiso Y, Tanaka M, Sazawa A, Harabayashi T, Koyanagi T (1997) The significance of Ras guanine nucleotide exchange factor, son of sevenless protein, in renal cell carcinoma cell lines. J Urol 158:908–911

    Article  PubMed  CAS  Google Scholar 

  31. Silver DA, Morash C, Brenner P, Campbell S, Russo P (1997) Pathologic findings at the time of nephrectomy for renal mass. Ann Surg Oncol 4:570–574

    Article  PubMed  CAS  Google Scholar 

  32. Stöckle M, Steinbach F, Schweden F, Hohenfellner R (1992) Klinik des Nierenzellkarzinoms - Stellenwert der bildgebenden Diagnostik. Radiologe 32:95–103

    Google Scholar 

  33. Störkel S, Jacobi GH (1989) Systematik, Histogenese und Prognose der Nierenzellkarzinome und des Onkozytoms. Verh Dtsch Ges Pathol 73:321–328

    PubMed  Google Scholar 

  34. Strauss LG (1996) Fluorine-18 deoxyglucose and false positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415

    Article  PubMed  CAS  Google Scholar 

  35. Wahl RL, Cody R, Hutchins G, Mudgett E (1991) Positron-emission tomographic scanning of primary and metastatic breast carcinoma with the radiolabeled glucose analogue 2-deoxy-2-[18F]fluoro-D-glucose. N Engl J Med 324:200

    PubMed  CAS  Google Scholar 

  36. Yao WJ, Hoh CK, Hawkins RA, Glaspy JA, Weil JA, Lee SJ, Maddahi J, Phelps ME (1994) Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines. J Nucl Med 36:794–799

    Google Scholar 

  37. Zasadny KR, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 189:847–850

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Börner, A.R., Hofmann, M., Müller-Mattheis, V. (2000). Renal cell and urothelial cancer. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_26

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics