Skip to main content

Physics, quality control

  • Chapter
Book cover PET in Clinical Oncology
  • 150 Accesses

Abstract

Positron emission tomography (PET) is a nuclear medical modality which provides quantitative tomographic images and allows one to noninvasively determine the time course of a radioactive substance in vivo. Positron emitters are used for labeling biochemical substances. After injection of the radioactive tracer, the radiation from the body is registered by external detectors and tomographic images of the tracer distribution in the body are reconstructed using mathematical algorithms. The measured intensity and time course of the activity concentration in tissue depend on the specific physiological process in which the tracer takes part. Developments in PET instrumentation aim at improving resolution and sensitivity, in order to obtain precise measurements with as little radioactivity as possible. The recent clinical success of PET promoted new developments in scanner technology, thus bringing conventional nuclear medicine and PET closer together [26].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger H (1963) Gamma-ray and positron scintillation camera. Nucleonics 21:10–56

    Google Scholar 

  2. Bailey D, Young H, Bloomfield P, et al. (1997) ECAT ART - a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 24:6–15

    Article  PubMed  CAS  Google Scholar 

  3. Bendriem B, Townsend D (1998) The theory and practice of 3D PET. Dordrecht, Kluwer Academic Publishers

    Google Scholar 

  4. Brix G, Zaers J, Adam LE, et al. (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38(10):1614–1623

    PubMed  CAS  Google Scholar 

  5. Budinger T (1998) PET instrumentation: what are the limits? Semin Nucl Med 28:247–267

    Article  PubMed  CAS  Google Scholar 

  6. Casey M, Eriksson L, Schmand M, et al. (1997) Investigation of LSO crystals for high resolution positron emission tomography. IEEE Trans Nucl Sci 44:1109–1113

    Article  CAS  Google Scholar 

  7. Casey M, Nutt R (1986) Multicrystal two dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 33:460–463

    Article  Google Scholar 

  8. Chatziioannou A, Cherry S, Shao Y, et al. (1999) Performance evaluation of micro-PET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. J Nucl Med 40:1164–1175

    PubMed  CAS  Google Scholar 

  9. Cherry S, Dahlbom M, Hoffman E (1991) 3D PET using a conventional multislice tomograph without septa. J Comput Assist Tomogr 15:655–668

    Article  PubMed  CAS  Google Scholar 

  10. Cherry S, Dahlbom M, Hoffman E (1992) High sensitivity, total body PET scanning using 3D data acquisition and reconstruction. IEEE Trans Nucl Sci 39:1088–1092

    Article  CAS  Google Scholar 

  11. Dahlbom M, Hoffman E, Hoh C, et al. (1992) Whole-body positron emission tomography: Part I. Methods and performance characteristics. J Nucl Med 33:1191–1199

    PubMed  CAS  Google Scholar 

  12. Dahlbom M, MacDonald L, Eriksson L, et al. (1997) Performance of a YSO/LSO detector block for use in a PET/SPECT system. IEEE Trans Nucl Sci 44:1114–1119

    Article  CAS  Google Scholar 

  13. DeGrado TR, Turkington TG, Williams JJ, et al. (1994) Performance characteristics of a whole-body PET scanner. J Nucl Med 35:1398–1406

    PubMed  CAS  Google Scholar 

  14. Ferreira N, Trebossen R, Bendriem B (1998) Assessment of 3-D PET quantitation: influence of out of the field of view radioactive sources and of attenuating media. IEEE Trans Nucl Sci 45:1670–1675

    Article  CAS  Google Scholar 

  15. Karp J, Daube-Witherspoon M, Hoffman E, et al. (1991) Performance standards in positron emission tomography. J Nucl Med 32:2342–2350

    PubMed  CAS  Google Scholar 

  16. Karp J, Muehllehner G, Geagan M, et al. (1998) Whole-body PET scanner using curve-plate NaI(T1) detectors. J Nucl Med 39:50P

    Google Scholar 

  17. Karp J, Muehllehner G, Mankoff D, et al. (1990) Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 31:617–627

    PubMed  CAS  Google Scholar 

  18. Levin CS, Hoffman EJ (1999) Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution. Phys Med Biol 44(3):781–799

    Article  PubMed  CAS  Google Scholar 

  19. Lewellen T, Kohlmyer S, Miyaoka R, et al. (1996) Investigation of the performance of the General Electric ADVANCE positron emission tomograph in 3D mode. IEEE Trans Nucl Sci 43:2199–2206

    Article  Google Scholar 

  20. Melcher CL, Schweitzer JS (1992) A promising new scintillator: cerium-doped lutetium oxyorthosilicate. Nucl Instr and Meth 314:212–214

    Article  Google Scholar 

  21. Muehllehner G (1979) Effect of crystal thickness on scintillation camera performance. J Nucl Med 20:992–993

    PubMed  CAS  Google Scholar 

  22. Muehllehner G, Karp J (1986) A positron camera using position-sensitive detectors: PENN-PET. J Nucl Med 27:90–98

    PubMed  CAS  Google Scholar 

  23. Nellemann P, Hines H, Braymer W, et al. (1995) Performance characteristics of a dual head SPECT scanner with PET capability. IEEE Medical Imaging Conference, San Francisco

    Google Scholar 

  24. NEMA (1994) Performance measurements of positron emission tomographs NU 21994. National Electrical Manufacturers Association, Washington

    Google Scholar 

  25. Patton JA, Turkington TG (1999) Coincidence imaging with a dual-head scintillation camera. J Nucl Med 40(3):432–441

    PubMed  CAS  Google Scholar 

  26. Phelps M, Cherry S (1998) The changing design of positron imaging systems. Clin Pos Imag 1:31–45

    Article  Google Scholar 

  27. Phelps M, Hoffman E, Mullani N, et al. (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16:210–224

    PubMed  CAS  Google Scholar 

  28. Pichler B, Boening G, Lorenz E, et al. (1998) Studies with a prototype high resolution PET scanner based on LSO-APD module. IEEE Trans Nucl Sci 45:1298–1302

    Article  Google Scholar 

  29. Schmand M, Dahlbohm M, Eriksson L, et al. (1998) Performance of a LSO/NaI(Tl) phoswich detector for a combined PET/SPECT imaging system. J Nucl Med 39:9P

    Google Scholar 

  30. Schmand M, Eriksson L, Casey M, et al. (1998) Detector design of a LSO based positron emission tomograph with depth of interaction capability for high resolution brain imaging. J Nucl Med 39:133P

    Google Scholar 

  31. Sossi V, Barney J, Harrison R (1995) Effect of scatter from radioactivity outside of the field of view in 3-D PET. IEEE Trans Nucl Sci 42:1157–1161

    Article  Google Scholar 

  32. Spinks T, Jones T, Heather J, et al. (1989) Quality control procedures in positron tomography. Eur J Nucl Med 15:736–740

    Article  PubMed  CAS  Google Scholar 

  33. Townsend D, Wensveen M, Byars L, et al. (1993) A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 34:1367–1376

    PubMed  CAS  Google Scholar 

  34. Wienhard K, Eriksson L, Grootoonk S, et al. (1992) Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 16:804–813

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ziegler, S.I. (2000). Physics, quality control. In: Wieler, H.J., Coleman, R.E. (eds) PET in Clinical Oncology. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57703-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57703-1_2

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63329-4

  • Online ISBN: 978-3-642-57703-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics