Skip to main content

Experimentelle Pathophysiologie zerebraler Durchblutungsstörungen

  • Chapter
Der Schlaganfall
  • 217 Accesses

Zusammenfassung

Das Gehirn bezieht die für seine Funktion notwendige Energie fast ausschließlich aus dem oxidativen Abbau von Glukose. Bei normaler Körpertemperatur beträgt der Sauerstoffverbrauch des Primatengehirns etwa 4 ml/100g/min und der Glukoseverbrauch etwa 30 μmol/ 100g/min. In der absteigenden Tierreihe nimmt der Glukose- und Sauerstoffverbrauch wegen der höheren Zelldichte des Gehirns zu und beträgt bei der Katze etwa das l,5fache und bei der Ratte und der Maus das 2- bis 3fache des Stoffumsatzes beim Primaten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ames A, Wright RL, Kowada M, Thurston JM, Majno G (1968) Cerebral ischemia: II. The no-reflow phenomenon. Am J Pathol 52:437–453

    PubMed  Google Scholar 

  2. Back T, Ginsberg MD, Dietrich WD, Watson BD (1996) Induction of spreading depression in the ischemic hemisphere following experimental middle cerebral artery occlusion: Effect on infarct morphology. J Cereb Blood Flow Metab 16:202–213

    Article  PubMed  CAS  Google Scholar 

  3. Betz E (1981) Physiologie und Pathophysiologie der Gehirndurchblutung. In: Diethelm L (Hrsg) Handbuch der Medizinischen Radiologie. Springer, Berlin, 14:193–294

    Google Scholar 

  4. Bodsch W, Takahashi K, Barbier A, Grosse Ophoff B, Hossmann K-A (1985) Cerebral protein synthesis and ischemia. Prog Brain Res 63:197–210

    Article  PubMed  CAS  Google Scholar 

  5. Borlongan CV, Koutouzis TK, Jorden JR, Martinez R, Rodriguez AI, Poulos SG, Freeman TB, McKeown P, Cahill DW, Nishino H, Sanberg PR (1997) Neural transplantation as an experimental treatment modality for cerebral ischemia. Neurosci Biobehav Rev 21:79–90

    Article  PubMed  CAS  Google Scholar 

  6. Böttiger BW, Schmitz B, Wiessner C, Vogel P, Hossmann K-A (1998) Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab 18:1077–1087

    Article  PubMed  Google Scholar 

  7. Brinker G, Franke C, Hoehn M, Uhlenküken U, Hossmann K-A (1999) Thrombolysis of cerebral clot embolism in rat: effect of treatment delay. NeuroReport 10:3269–3272

    Article  PubMed  CAS  Google Scholar 

  8. Busch E, Krüger K, Allegrini PR, Kerskens CM, Gyngell ML, Hoehn-Berlage M, Hossmann K-A (1998) Reperfusion after thrombolytic therapy of embolic stroke in the rat — magnetic resonance and biochemical imaging. J Cereb Blood Flow Metab 18:407–418

    Article  PubMed  CAS  Google Scholar 

  9. Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    Article  PubMed  CAS  Google Scholar 

  10. Chen J, Graham SH, Nakayama M, Zhu RL, Jin KL, Stetler RA, Simon RP (1997) Apoptosis repressor genes bcl-2 and bcl-x-long are expressed in the rat brain following global ischemia. J Cereb Blood Flow Metab 17:2–10

    Article  PubMed  CAS  Google Scholar 

  11. Chen J, Graham SH, Zhu RL, Simon RP (1996) Stress proteins and tolerance to focal cerebral ischemia. J Cereb Blood Flow Metab 16:566–577

    Article  PubMed  CAS  Google Scholar 

  12. Choi DW (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6:667–672

    Article  PubMed  CAS  Google Scholar 

  13. Choi DW (1995) Calcium: Still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 18:58–60

    Article  PubMed  CAS  Google Scholar 

  14. Choi DW (1992) Excitotoxic cell-death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  15. Choi DW (1993) NMDA receptors and AMPA/kainate receptors mediate parallel injury in cerebral cortical cultures subjected to oxygen-glucose deprivation. Prog Brain Res 96:137–143

    Article  PubMed  CAS  Google Scholar 

  16. Choi DW, Koh JY (1998) Zinc and brain injury. Annu Rev Neurosci 21:347–375

    Article  PubMed  CAS  Google Scholar 

  17. Conner JM, Tuszynski MH (1998) Growth factor therapy. Ment Retard Develop Disabil Res Rev 4:212–222

    Article  Google Scholar 

  18. Connolly ES, Winfree CJ, Stern DM, Solomon RA, Pinsky DJ (1996) Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38:523–531

    PubMed  Google Scholar 

  19. Dalkara T, Yoshida T, Irikura K, Moskowitz MA (1994) Dual role of nitric oxide in focal cerebral ischemia. Neuropharmacology 33:1447–1452

    Article  PubMed  CAS  Google Scholar 

  20. Date H, Hossmann K-A, Shima T (1984) Effect of middle cerebral artery compression on pial artery pressure, blood flow, and electrophysiological function of cerebral cortex of cat. J Cereb Blood Flow Metab 4:593–598

    Article  PubMed  CAS  Google Scholar 

  21. DeGracia DJ, Adamczyk S, Folbe AJ, Konkoly LL, Pittman JE, Neumar RW, Sullivan JM, Scheuner D, Kaufman RJ, White BC, Krause GS (1999) Eukaryotic initiation factor 2 alpha kinase and phosphatase activity during postischemic brain reperfusion. Exp Neurol 155:221–227

    Article  PubMed  CAS  Google Scholar 

  22. Doble A (1999) The role of excitotoxicity in neuro-degenerative disease: implications for therapy. Pharmacol Ther 81:163–221

    Article  PubMed  CAS  Google Scholar 

  23. Dorman PJ, Counsell CE, Sandercock PAG (1996) Recently developed neuroprotective therapies for acute stroke: A qualitative systematic review of clinical trials. CNS Drugs 5:457–474

    Article  CAS  Google Scholar 

  24. Eliasson MJL, Huang ZH, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA (1999) Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci 19:5910–5918

    PubMed  CAS  Google Scholar 

  25. Fink K, Zhu JM, Namura S, Shimizu-Sasamata M, Endres M, Ma JY, Dalkara T, Yuan JY, Moskowitz MA (1998) Prolonged therapeutic window for ischemie brain damage caused by delayed caspase activation. J Cereb Blood Flow Metab 18:1071–1076

    Article  PubMed  CAS  Google Scholar 

  26. Fischer EG, Ames A (1972) Studies on mechanisms of impairment of cerebral circulation following ischemia: effect of hemodilution and perfusion pressure. Stroke 3:538–542

    Article  PubMed  CAS  Google Scholar 

  27. Fischer M, Hossmann K-A (1995) No-reflow after cardiac arrest. Intens Care Med 21:132–141

    Article  CAS  Google Scholar 

  28. Garcia JH, Liu KF, Ye ZR (1997) Cytokines and reperfusion in ischemie stroke. Brain Pathol 7:1151–1161

    Article  CAS  Google Scholar 

  29. Ginsberg MD, Sternau LL, Globus MYT, Dietrich WD, Busto R (1992) Therapeutic modulation of brain temperature — relevance to ischemie brain injury. Cerebrovasc Brain Metab Rev 4:189–225

    PubMed  CAS  Google Scholar 

  30. Graf R, Saito R, Hübel K, Fujita T, Rosner G, Heiss W-D (1995) Spreading depression-like DC-negativations turn into terminal depolarisation after prolonged focal ischemia in cats. J Cereb Blood Flow Metab 15(Suppl 1):15

    Google Scholar 

  31. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  32. Grotta J (1995) Why do all drugs work in animals but none in stroke patients? 2. Neuroprotective therapy. J Intern Med 237:89–94

    Article  PubMed  CAS  Google Scholar 

  33. Gyngell ML, Back T, Hoehn-Berlage M, Kohno K, Hossmann K-A (1994) Transient cell depolarization after permanent middle cerebral artery occlusion: an observation by diffusion-weighted MRI and localized 1H-MRS. Magn Reson Med 31:337–341

    Article  PubMed  CAS  Google Scholar 

  34. Hacke W, Kaste M, Fieschi C, Toni D, Lesaffre E, Kummer Rv, Boysen G, Bluhmki E, Höxter G, Mahagne MH, Hennerici M (1995) Intravenous thrombolysis with recombinant tissue plasminogen activator for acute hemispheric stroke. The European Cooperative Acute Stroke Study (ECASS). JAMA 274:1017–1025

    PubMed  CAS  Google Scholar 

  35. Hakim AM (1998) Ischemie penumbra — the therapeutic window. Neurology 51(Suppl 3):S 44–S 46

    CAS  Google Scholar 

  36. Hall ED (1999) Free radicals in stroke. In: Miller LP (Hrsg) Stroke Therapy: Basic, Preclinical, And Clinical Directions. Wiley-Liss, New York, pp 245–270

    Google Scholar 

  37. Hata R, Maeda K, Hermann D, Mies G, Hossmann K-A (2000) Dynamics of regional brain metabolism and gene expression after middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:306–315

    Article  PubMed  CAS  Google Scholar 

  38. Heiss WD (1992) Experimental evidence of ischemie thresholds and functional recovery. Stroke 23:1668–1672

    Article  PubMed  CAS  Google Scholar 

  39. Heiss WD, Graf R (1997) Therapeutic window in ischaemic stroke — experimental concepts, neuroi-maging studies and implications for pharmacological treatment. CNS Drugs 8:474–491

    Article  Google Scholar 

  40. Heiss WD, Grond M, Thiel A, von Stockhausen HM, Rudolf J (1997) Ischaemic brain tissue salvaged from infarction with alteplase. Lancet 349:1599–1600

    Article  PubMed  CAS  Google Scholar 

  41. Heistad DD, Faraci FM (1996) Gene therapy for cerebral vascular disease. Stroke 27:1688–1693

    Article  PubMed  CAS  Google Scholar 

  42. Hillered L, Chan PH (1988) Role of arachidonic acid and other free fatty acids in mitochondrial dysfunction in brain ischemia. J Neurosci Res 20:451–456

    Article  PubMed  CAS  Google Scholar 

  43. Hodges H, Nelson A, Virley D, Kershaw TR, Sinden JD (1997) Cognitive deficits induced by global cerebral ischaemia-prospects for transplant therapy. Pharmacol Biochem Behav 56:763–780

    Article  PubMed  CAS  Google Scholar 

  44. Horn J, Brouwers P, Limburg M (1999) Disturbances of calcium homeostasis in ischaemic stroke-therapeutic implications. CNS Drugs 11:373–386

    Article  CAS  Google Scholar 

  45. Hossmann K-A (1993) Disturbances of cerebral protein synthesis and ischemic cell death. Prog Brain Res 96:161–177

    Article  PubMed  CAS  Google Scholar 

  46. Hossmann K-A (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Article  PubMed  CAS  Google Scholar 

  47. Hossmann K-A (1997) Reperfusion of the brain after global ischemia — hemodynamic disturbances. Shock 8:95–101

    Article  PubMed  CAS  Google Scholar 

  48. Hossmann V, Hossmann K-A (1973) Return of neuronal functions after prolonged cardiac arrest. Brain Res 60:423–438

    Article  PubMed  CAS  Google Scholar 

  49. Hudgins WR, Garcia JH (1970) Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke 1:107–111

    Article  PubMed  CAS  Google Scholar 

  50. Hunter AJ, Mackay KB, Rogers DC (1998) To what extent have functional studies of ischaemia in animals been useful in the assessment of potential neuropro-tective agents. Trends Pharmacol Sci 19:59–66

    Article  PubMed  CAS  Google Scholar 

  51. Iijima T, Bauer R, Hossmann K-A (1993) Brain resuscitation by extracorporeal circulation after prolonged cardiac arrest in cats. Intens Care Med 19:82–88

    Article  CAS  Google Scholar 

  52. Kim YH, Kim EY, Gwag BJ, Sohn S, Koh JY (1999) Zinc-induced cortical neuronal death with features of apoptosis and necrosis, mediation by free radicals. Neuroscience 89:175–182

    Article  PubMed  CAS  Google Scholar 

  53. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69

    Article  PubMed  CAS  Google Scholar 

  54. Knopfel T, Madge D, Nicoletti F (1996) Metabotropic glutamate receptors. Expert Opin Ther Patents 6:1061–1067

    Article  CAS  Google Scholar 

  55. Kobayashi M, Lust WD, Passonneau JV (1977) Concentrations of energy metabolites and cyclic nucleotides during and after bilateral ischemia in the gerbil cerebral cortex. J Neurochem 29:53–59

    Article  PubMed  CAS  Google Scholar 

  56. Kobayashi T, Mori Y (1998) Ca2+ channel antagonists and neuroprotection from cerebral ischemia. Eur J Pharmacol 363:1–15

    Article  PubMed  CAS  Google Scholar 

  57. Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds) (1985) Molecular Mechanisms of Ischemie Brain Damage. Progress in Brain Research Vol 63, Elsevier, Amsterdam

    Google Scholar 

  58. Kogure T, Kogure K (1997) Molecular and biochemical events within the brain subjected to cerebral ischemia (targets for therapeutical intervention). Clin Neurosci 4:179–183

    PubMed  CAS  Google Scholar 

  59. Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemie brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemie area. Jpn J Stroke 8:1–8

    Article  Google Scholar 

  60. Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie ZH, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 96:5752–5757

    Article  PubMed  CAS  Google Scholar 

  61. Krieglstein J (1997) Mechanisms of neuroprotective drug actions. Clin Neurosci 4:184–193

    PubMed  CAS  Google Scholar 

  62. Kuroda S, Katsura K, Hillered L, Bates TE, Siesjö BK (1996) Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. Neurobiol Dis 3:149–157

    Article  PubMed  CAS  Google Scholar 

  63. Latchman DS (1998) Heat shock proteins — protective effect and potential therapeutic use. Int J Mol Med 2:375–381

    PubMed  CAS  Google Scholar 

  64. Lee JM, Zipfel GJ, Choi DW (1999) The changing landscape of ischaemic brain injury mechanisms. Nature 399(Suppl S):A7–A14

    Article  PubMed  CAS  Google Scholar 

  65. Li Y, Chopp M, Powers C, Jiang N (1997) Apoptosis and protein expression after focal cerebral ischemia in rat. Brain Res 765:301–312

    Article  PubMed  CAS  Google Scholar 

  66. Lipton SA, Nicotera P (1998) Calcium, free radicals and excitotoxins in neuronal apoptosis. Cell Calcium 23:165–171

    Article  PubMed  CAS  Google Scholar 

  67. MacManus JP, Linnik MD (1997) Gene expression induced by cerebral ischemia — an apoptotic perspective. J Cereb Blood Flow Metab 17:815–832

    Article  PubMed  CAS  Google Scholar 

  68. Marier JR et al (1995) Tissue plasminogen activator for acute ischemie stroke. N Engl J Med 333:1581–1587

    Article  Google Scholar 

  69. Mies G, Iijima T, Hossmann K-A (1993) Correlation between periinfarct DC shifts and ischemie neuronal damage in rat. Neuro Report 4:709–711

    CAS  Google Scholar 

  70. Nedergaard M, Hansen AJ (1993) Characterization of cortical depolarizations evoked in focal cerebral ischemia. J Cereb Blood Flow Metab 13:568–574

    Article  PubMed  CAS  Google Scholar 

  71. Obrenovitch TP (1995) The ischaemic penumbra: Twenty years on. Cerebrovasc Brain Metab Rev 7:297–323

    PubMed  CAS  Google Scholar 

  72. Obrenovitch TP, Richards DA (1995) Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev 7:1–54

    PubMed  CAS  Google Scholar 

  73. O’Brien MD, Waltz AG (1973) Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke 4:201–206

    Article  CAS  Google Scholar 

  74. Overgaard K, Sereghy T, Boysen G, Pedersen H, Diemer NH (1993) Reduction of infarct volume by thrombolysis with rt-PA in an embolie rat stroke model. Scand J Clin Lab Invest 53:383–393

    Article  PubMed  CAS  Google Scholar 

  75. Paschen W (1996) Disturbances of calcium homeostasis within the endoplasmic reticulum may contribute to the development of ischemie cell damage. Med Hypotheses 47:283–288

    Article  PubMed  CAS  Google Scholar 

  76. Paschen W, Doutheil J (1999) Disturbance of endoplasmic reticulum functions: a key mechanism underlying cell damage? Current Progress in the Understanding of Secondary Brain Damage From Trauma and Ischemia 73:1–5

    Article  CAS  Google Scholar 

  77. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoregulation. Cerebrovasc Brain Metab Rev 2:161–192

    PubMed  CAS  Google Scholar 

  78. Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171–181

    Article  PubMed  CAS  Google Scholar 

  79. Prass K, Dirnagl U (1998) Glutamate antagonists in therapy of stroke. Acta Anaesthesiol Scand 13:3–10

    CAS  Google Scholar 

  80. Pulsinelli WA, Brierley JB (1978) A new model of global brain ischemia in the rat. Neurology 28:379–379

    Google Scholar 

  81. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  PubMed  CAS  Google Scholar 

  82. Safar P (1985) Long-term animal outcome models for cardiopulmonary-cerebral resuscitation research. Crit Care Med 13:936–940

    Article  PubMed  CAS  Google Scholar 

  83. Samdani AF, Dawson TM, Dawson VL (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28:1283–1288

    Article  PubMed  CAS  Google Scholar 

  84. Siesjö BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, Uchino H (1999) Role and mechanisms of secondary mitochondrial failure. Current Progress in the Understanding of Secondary Brain Damage From Trauma and Ischemia 73:7–13

    Article  Google Scholar 

  85. Siesjö BK, Zhao Q, Pahlmark K, Siesjö P, Katsura K, Folbergrova J (1995) Glutamate, calcium, and free radicals as mediators of ischemic brain damage. Ann Thorac Surg 59:1316–1320

    Article  PubMed  Google Scholar 

  86. Sims NR, Zaidan E (1995) Biochemical changes associated with selective neuronal death following short-term cerebral ischaemia. Int J Biochem Cell Biol 27:531–550

    Article  PubMed  CAS  Google Scholar 

  87. Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemie brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 64:319–332

    Article  PubMed  CAS  Google Scholar 

  88. Smith M-L, Bendek G, Dahlgren N, Rosen I, Wieloch T, Siesjö BK (1984) Models for studying longterm recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    Article  PubMed  CAS  Google Scholar 

  89. Spatz M, Yasuma Y, Strasser A, McCarron RM (1996) Cerebral postischemic hypoperfusion is mediated by ET(A) receptors. Brain Res 726:242–246

    Article  PubMed  CAS  Google Scholar 

  90. Stoll G, Jander S, Schroeter M, Witte OW (1997) Anti-adhesion molecule strategies — a new perspective in the treatment of ischaemic stroke. Aktuel Neurol 24:56–60

    Article  Google Scholar 

  91. Suzuki R, Yamaguchi T, Li C-L, Klatzo I (1983) The effects of 5-minute ischemia in mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol 60:217–222

    Article  PubMed  CAS  Google Scholar 

  92. Symon L, Branston NM, Strong AJ, Hope TD (1977) The concepts of thresholds of ischaemia in relation to brain structure and function. J Clin Pathol 30,Suppl. 11:149–154

    Article  Google Scholar 

  93. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    Article  PubMed  CAS  Google Scholar 

  94. Villa RF, Gorini A (1997) Pharmacology of lazaroids and brain energy metabolism — a review. Pharmacol Rev 49:99–136

    PubMed  CAS  Google Scholar 

  95. Zoppo GJd (1995) Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 237:79–88

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hossmann, KA. (2001). Experimentelle Pathophysiologie zerebraler Durchblutungsstörungen. In: Hartmann, A., Heiss, WD. (eds) Der Schlaganfall. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57629-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57629-4_5

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63316-4

  • Online ISBN: 978-3-642-57629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics