Skip to main content

Physiologie der Hirndurchblutung

  • Chapter
Der Schlaganfall
  • 220 Accesses

Zusammenfassung

Während früher die Blutgase CO2 und O2 als die wesentlichen regulierenden Faktoren der Hirndurchblutung angesehen wurden, hat die Weiterentwicklung der Meßmethoden es immer deutlicher gezeigt, dass es sich bei der Regulation der Hirndurchblutung um ein hochdifferenziertes System handelt, in dem globale und lokale Faktoren verschiedenen Ursprungs und verschiedener Struktur zusammenwirken. Diese neueren Befunde zeigen klar, dass die Prinzipien der Regulation der Hirndurchblutung zumindest qualitativ mit den Prinzipien der Regulation vergleichbar sind, die auch an anderen Organen wirksam sind: Die Regulation richtet sich nach den funktionellen und metabolischen Anforderungen des betreffenden Organs aus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Baumbach GL, Heistad DD, Siems JE (1989) Effect of sympathetic nerves on composition and disten-sibility of cerebral arterioles in rats. J Physiol 416:123–140

    PubMed  CAS  Google Scholar 

  2. Bohlen HG, Harper SL (1984) Evidence of myo-genic vascular control in the rat cerebral cortex. Circ Res 55:554–559

    Article  PubMed  CAS  Google Scholar 

  3. Brightman MW, Tao-Cheng JH (1993) Tight junctions of brain endothelium and epithelium. In: Pardridge WM (ed) The blood-brain barrier. Raven Press, New York, pp 107–125

    Google Scholar 

  4. Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  PubMed  CAS  Google Scholar 

  5. Dirnagl U, Niwa K, Lindauer U, and Villringer A (1994) Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide. Am J Phyiol 267:296–301

    Google Scholar 

  6. Dirnagl U, Pulsinelli W (1990) Autoregulation of cerebral blood flow in experimental focal brain ischemia. J Cereb Blood Flow Metab 10:327–336

    Article  PubMed  CAS  Google Scholar 

  7. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol Rev 78:54–97

    Google Scholar 

  8. Florence G, Seylaz J (1992) Rapid autoregulation of cerebral bood flow: A laser-Doppler flowmetry study. J Cereb Blood Flow Metab 12:674–680

    Article  PubMed  CAS  Google Scholar 

  9. Fox PT, Raichle ME (1986) Focal physiological uncoupling of cere bral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci USA 83:1140–1144

    Article  PubMed  CAS  Google Scholar 

  10. Frahm J, Bruhn M, Merboldt KD, Hanicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2:501–505

    Article  PubMed  CAS  Google Scholar 

  11. Goadsby PJ, Sercombe R (1996) Neurogenic regulation of cerebral blood flow:extrinsic neural control. In: Sercombe R, Mraovitch S (eds) Neurophy-siological basis of cerebral blood flow control: An introduction. Libbey, London, pp 285–321

    Google Scholar 

  12. Goadsby PJ, Silberstein SD (1997) Headache. But-terworth-Heinemann, New York

    Google Scholar 

  13. Harder DR, Sanchez-Ferrer C, Kauser K, Stekiel WJ, Rubanyi GM (1989) Pressure releases a transferable endothelial contractile factor on cat cerebral arteries. Circ Res 65:193–198

    Article  PubMed  CAS  Google Scholar 

  14. Katusic ZS, Shepherd JT, Vanhoutte PM (1987) Endothelium-dependent contraction to stretch in canine basilar arteries. Am J Physiol 252:671–673

    Google Scholar 

  15. Ko KR, Ngai AC, Winn HR (1990) Role of adenosine in regulation of regional cerebral blood flow in sensory cortex. Am J Physiol 259:H1703–H1708

    PubMed  CAS  Google Scholar 

  16. Kuschinsky W (1982) Role of hydrogen ions in regulation of cerebral blood flow and other regional flows. In: Altura BM (ed) Ionic Regulatin of the Microcirculation. Karger, Basel, pp 1–19

    Google Scholar 

  17. Lansman JB (1988) Going with the flow. Nature 331:481–482

    Article  PubMed  CAS  Google Scholar 

  18. Lund Madsen P, Hasselbalch SG, Hagemann LP, Olsen KS, Bülow J, Holm S, Wildschiodtz G, Paulson OB, Lassen NA (1995) Persistent resetting of the cerebral oxygen/glucose uptake ratio by brain activation: Evidence obtained with the Kety-Schmidt technique. J Cereb Blood Flow Metab 15:485–491

    Article  Google Scholar 

  19. Magistretti PJ, Pellerin L, Rothman DL, Shulman RG (1999) Energy on demand. Science 283:496–497

    Article  PubMed  CAS  Google Scholar 

  20. Malonek D, Grinvald A (1996) Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science 272:551–554

    Article  PubMed  CAS  Google Scholar 

  21. Mayhan WG, Werber AH, Heistad DD (1987) Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy. Circulation 75:I107–I112

    PubMed  CAS  Google Scholar 

  22. McCarron JG, Osol G, Halpern W (1989) Myogenic responses are independent of the endothelium in rat pressurized posterior cerebral arteries. Blood Vessels 26:315–319

    PubMed  CAS  Google Scholar 

  23. McPherson RW, Koehler RC, Traystman RJ (1988) Effect of jugular venous pressure on cerebral autoregulation in dogs. Am J Physiol 255:H1516–H1524

    PubMed  CAS  Google Scholar 

  24. Meiniger GA, Davis MJ (1992) Cellular mechanisms involved in the vascular myogenic response. Am J Physiol 263:H647–H659

    Google Scholar 

  25. Mraovitch S, Sercombe R (eds) (1996) Neurophy-siological basis of cerebral blood flow control: An introduction. Libbey, London

    Google Scholar 

  26. Ngai AC, Winn HR (1993) Effects of adenosine and its analogues on isolaed intracerebral arterioles. Extraluminal and intraluminal application. Circ Res 73:448–457

    CAS  Google Scholar 

  27. Northington FJ, Matherne GP, Coleman SD, Berne RM (1992) Sciatic nerve stimulation does not increase endogenous adenosine production in sensory-motor cortex. J Cereb Blood Flow Metab 12:835–843

    Article  PubMed  CAS  Google Scholar 

  28. Ogawa S, Tank DW, Menou R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  29. Osol G (1995) Mechanotransduction by vascular smooth muscle. J Vasc Res 32:275–292

    PubMed  CAS  Google Scholar 

  30. Park TS, van Wylen DGL, Rubio R, Berne RM (1987) Interstitial fluid adenosine and sagittal sinus blood flow during bicuculline-seizures in newborn piglets. J Cereb Blood Flow Metab 7:633–639

    Article  PubMed  CAS  Google Scholar 

  31. Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898

    Article  PubMed  CAS  Google Scholar 

  32. Paulson OB, Strandgaard S, Edvinsson L (1990) Cerebral autoegulation. Cerebrovasc Brain Metab Rev 2:161–192

    PubMed  CAS  Google Scholar 

  33. Paulson OB, Waldemar G, Andersen AR, Barry DI, Pedersen EV, Schmidt JF, Vorstrup S (1988) Role of angiotensin in autoregulation of cerebral blood flow. Circulation 77:55–58

    Google Scholar 

  34. Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolosis: A mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci 91:10625–10629

    Article  PubMed  CAS  Google Scholar 

  35. Pinard E, Riche D, Puiroud S, Seylaz J (1990) Theophylline reduces cerebral hyperemia and enhances brain damage induced by seizures. Brain Res 511:303–309

    Article  PubMed  CAS  Google Scholar 

  36. Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T, Avison M, Howseman A, Hanstock C, Shulman R (1991) Lactate rise detected by [1H]NMR in human visual cortex during physiological stimulation. Proc Natl Acad Sci 88:5829–5831

    Article  PubMed  CAS  Google Scholar 

  37. Rubanyi GM (1988) Endothelium-dependent pressure-induced conraction of isolated canine carotid arteries. Am J Physiol 255:H783–H788

    PubMed  CAS  Google Scholar 

  38. Saito S, Wilson DA, Hanley DF, Traystman RJ (1994) Nitric oxide synthase does not contribute to cerebral autoregulatory phenomenon in anesthetized dogs. J Auton Nerv Syst 49:S73–S76

    Article  PubMed  CAS  Google Scholar 

  39. Schrader J, Wahl M, Kuschinsky W, Kreutzberg GW (1980) Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure. Pfügers Arch 387:245–251

    Article  CAS  Google Scholar 

  40. Sibson NR, Dhankhar A, Mason GF, Rothman DL, Behar, KL, Shulman RG (1998) Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci 95:316–321

    Article  PubMed  CAS  Google Scholar 

  41. Tuor U (1992) Acute hypertension and sympathetic stimulation: local heterogeneous changes in cerebral blood flow. Am J Physiol 263:H511–H518

    PubMed  CAS  Google Scholar 

  42. Villinger A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci Lett 154:101–104

    Article  Google Scholar 

  43. Wahl M, Kuschinsky W (1979) Unimportance of perivascular H+ and K+ activities for the adjustment of pial arterial diameter during changes of arterial blood pressure in cats. Pflügers Arch 382:203–209

    Article  PubMed  CAS  Google Scholar 

  44. Waldemar G (1990) Acute sympathetic denervation does not elimiate the effect of angiotensin converting enzyme inhibition on CBF autoregulation in spontaneously hypertensive rats. J Cereb Blood Flow Metab 10:43–47

    Article  PubMed  CAS  Google Scholar 

  45. Waldemar G, Schmidt JF, Andersen AR, Vorstrup S, Ibsen H, Paulson OB (1989) Angiotensin converting enzyme inhibition and cerebral blood flow autoregulation in normotensive and hypertenive man. J Hypertension 7:229–235

    Article  CAS  Google Scholar 

  46. Wei EP, Kontos HA (1984) Increased venous pressure causes myogenic constriction of cerebral ar-terioles during local hyperoia. Circ Res 55:249–252

    Article  PubMed  CAS  Google Scholar 

  47. Welch KMA, Caplan LR, Reis DJ, Siesjö BK, Weir B (eds)(1997) Primer on cerebrovascular diseases. Academic Press, San Diego

    Google Scholar 

  48. Winn HR, Welsh JE, Rubio R, Berne RM (1980) Changes in brain adenosine during bicuculline induced seizures in rats. Effects of hypoxia and altered systemic blood pressure. Circ. Res 47:568–577

    Article  PubMed  CAS  Google Scholar 

  49. Wylen van DGL, Park TS, Rubio R, Berne RM (1988) Cerebral blood flow and interstitial fluid adenosine during hemorrhagic hypotension. Am J Physiol 255:H1211–H1218

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuschinsky, W. (2001). Physiologie der Hirndurchblutung. In: Hartmann, A., Heiss, WD. (eds) Der Schlaganfall. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57629-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57629-4_2

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63316-4

  • Online ISBN: 978-3-642-57629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics