Skip to main content

Experimentelle Untersuchungen zur Anwendung einer antiosteolytischen Therapie in der Endoprothetik

  • Chapter
Bisphosphonattherapie von Knochenerkrankungen
  • 16 Accesses

Zusammenfassung

Weltweit werden jährlich etwa 1,5 Millionen Hüftgelenksendoprothesen, davon etwa 120000 in Deutschland, implantiert. Hierzu addiert sich eine nicht unerhebliche Anzahl weiterer Gelenksprothesen, wie Kniegelenk-, Sprunggelenk-und Schultergelenkendoprothesen. Die Implantation von Endopro-thesen ist für einen Großteil der Patienten eine erfolgreiche Operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Astrand J, Aspenberg P (1999) Alendronate did not inhibit instability-induced bone resorption. A study in rats. Acta Orthop Scand 70:67–70

    Article  CAS  Google Scholar 

  2. Astrand J, Skripitz R, Aspenberg P (2000) Alendronate Reduces Osteolysis Induced By Fluid Pressure in a Rat Model. Proc Orthopaedic Research Society Orlando 524

    Google Scholar 

  3. Bragdon CR, Biggs S, Wintle S, Jasty M, Rubash HE, Harris WH (2000) Inhibition of disuse osteopenia around a canine ther under the influence of alendronate. Proc Orthopaedic Research Society Orlando, p 137

    Google Scholar 

  4. Fleisch H (1998) Bisphosphonates: mechanisms of action. Endocr Rev 19:80–100

    Article  PubMed  CAS  Google Scholar 

  5. Goodship AE, Lawes TJ, Green J, Eldridge JD, Kenwright J (1998) The Use of Bisphosphonates to Inhibit Mechanically Related Bone Loss in Aseptic Loosening of Hip Protheses. Trans Orthop Res Soc 2

    Google Scholar 

  6. Horowitz SM, Algan SA, Purdon MA (1996) Pharmacologic inhibition of particulate-induced bone resorption. J Biomed Mater Res 31:91–96

    Article  PubMed  CAS  Google Scholar 

  7. Jingushi S, Yasuda K, Sakai H, Azuma Y, Ohta T, Iwamoto Y (2000) Alendronate prevents bone resorption by isolated cells from periprosthetic granulation tissue in hips of revision total hip arthroplasty. Trans Orthop Res Soc, p 1

    Google Scholar 

  8. Kurth AA (2000) Osseointegration of metal Implants after Ibandronate treatment, (unpublished data)

    Google Scholar 

  9. Li J, Mori S, Kaji Y, Mashiba T, Kawanishi J, Norimatsu H (1999) Effect of bispho-sphonate (Incadronate) on fracture healing of long bones in rats. J Bone Miner Res 14:969–979

    Article  PubMed  CAS  Google Scholar 

  10. Lind M, Overgaard S, Ongpipattanakul B, Ngyen T, Bünger C, Soballe K (1996) Transforming Growth Factor Betal stimulates bone ongrowth to weight-loaded tricalcium phosphate coated implants. J Bone Joint Surg [Br] 78B:377–382

    Google Scholar 

  11. Madsen JE, Berg-Larsen T, Kirkeby OJ, Falch JA, Nordsletten L (2000) No adverse effect of clodronate on fracture healing in rats. Acta Orthop Scand 69:532–536

    Google Scholar 

  12. Meraw SJ, Reeve CM, Wollan PC (1999) Use of alendronate in peri-implant defect regeneration. J Periodontol 70:151–158

    Article  PubMed  CAS  Google Scholar 

  13. Milett PJ, Allen AJ, Doty S, Felker K, Izanec JL, Toledano S, Bostrom M (2000) Effects of alendronate on particulate-induced osteolysis in a rat model. Trans Orthop Res Soc, p 869

    Google Scholar 

  14. Pataki A, Müller K, Green JR, Ma YF, Li QN, Jee WS (1997) Effects of short-term treatment with the bisphosphonates zoledronate and pamidronate on rat bone: a comparative histomorphometric study on the cancellous bone formed before, during, and after treatment. Anat Rec 249:458–468

    Article  PubMed  CAS  Google Scholar 

  15. Pilliar SM, Lee JM, Maiatopolous C (1986) Observations of the effect of movement on bone ingrowth into porous-surfaced implants. Clin Orthop 208:108–113

    PubMed  Google Scholar 

  16. Rader CP, Baumann B, Rolf O, Eulert J (1999) TNF-alpha-Ausschüttung durch Abriebpartikel im humanen Makrophagenmodell und deren Beeinflussung durch Medikamente. Z Orthop 137:A70

    Google Scholar 

  17. Riley EH, Lane J, Urist M, Lyons KM, Lind M (1996) Bone Morpho-Genetic Protein-2:Biology and Application. Clin Orthop 324:39–46

    Article  PubMed  Google Scholar 

  18. Sabokbar A, Fujikawa Y, Murray DW, Athanasou NA (1998) Bisphosphonates in bone cement inhibit PMMA particle induced bone resorption. Ann Rheum Dis 57:614–618

    Article  PubMed  CAS  Google Scholar 

  19. Shanbhag AS, Hasselman CT, Rubash HE (1997) Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop 33–43

    Google Scholar 

  20. Shanbhag AS, Kenney JA, Manning C, Flannery M, Rubash HE, Goldring SR (2000) Mitogenic effect of bisphosphonates on osteoblastic cells. Proc Orthopaedic Research Society Orlando, pp 688

    Google Scholar 

  21. Shanbhag AS, May D, Cha C, Kovach C, Rubash HE (1999) Enhancing net bone formation in canine total hip components with bisphosphonates. Trans Orthop Res Soc 255

    Google Scholar 

  22. Skripitz R, Aspenberg P (2000) Implant fixation enhanced by intermittent parathyroid hormone treatment. Proc Orthopaedic Research Society Orlando, pp 326

    Google Scholar 

  23. Spector M, Shortkoff S, Hsu HP, Lane N, Sledge CB, Thornhill TS (1990) Tissue Changes Around Loose Protheses: A canine model to investigate the effects of an antiinflammatory agent. Clin Orthop 261:140–152

    PubMed  Google Scholar 

  24. Stanton L (1998) American Academy of Orthopaedic Surgeons arthroplasty and total joint replacement procedures: United States 1990-1995. http://www.aaos.org/word-htlm/press/arthropl.htm

  25. Thadani PJ, Waxman B, Sladek E, Gonzalez MH, Barmada R (1999) Inhibition of particulate debris induced osteolysis by alendronate in a rat model. Trans Orthop Res Soc, pp 321

    Google Scholar 

  26. Wooley PH, Sud S, Robbins PD, Whalen JD, Evans CH (1999) Contrasting effects of gen therapy to inhibit interleukin-1 beta or tumor necrosis factor alpha in the murine inflammatory response to wear particles. Trans Orthop Res Soc 23:122

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kurth, A.A. (2001). Experimentelle Untersuchungen zur Anwendung einer antiosteolytischen Therapie in der Endoprothetik. In: Kurth, A.A., Hovy, L., Hennigs, T. (eds) Bisphosphonattherapie von Knochenerkrankungen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57626-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57626-3_12

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1266-5

  • Online ISBN: 978-3-642-57626-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics