Skip to main content

Abstract

Graphs have been used since quite long in statistics as tools to represent probabilistic dependencies. The origins can be traced back to first applications in path analysis (Wright 1921). During the last decade developments took place that involved an improved understanding of the relationships between graphs and probabilities, on the one hand, and graphs and causal inference on the other (e. g. Pearl 1988, Spirtes et al. 1993). Graphical modeling has emerged as a key component of the KDD (knowledge discovery in databases) process in the way of extraction and depiction of dependencies from data. Further, graphical modelling provides a powerful symbolic machinery for causal analysis e. g. the problem of covariate selection and the assessment of causal effects in the sense of the potential response framework. If a decision maker fixes the value of a treatment variable the effects of this decision can easily be computed using the causal graph associated with this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop, Y., Fienberg, S. Holland, P. (1975): Discrete Multivariate Analysis, MIT Press, Cambridge.

    Google Scholar 

  • Bouckaert, R. (1995): Bayesian Belief Networks, From Construction to Inference, Ph.D. Dissertation, Computer Science Department, University of Utrecht.

    Google Scholar 

  • Castillo, E., Gutiérrez, J. M., Hadi, A. S. (1997): Expert Systems and Probabilistic Networks Models, Springer-Verlag, New York.

    Book  Google Scholar 

  • Chickering, M. (1996): Learning Bayesian Networks is NP-Complete, in: Fisher, D., Lenz, H. (eds.) Learning from Data, Lecture Notes in Statistics, Springer-Verlag, New York, 121–30.

    Google Scholar 

  • Cooper, G. F. (1999): An Overview of the Representation and Discovery of Causal Relationships Using Bayesian Networks, in: Glymour, C., Cooper, G. F. (eds.), Computation, Causation, and Discovery, MIT Press, Menlo Park, 3 - 62.

    Google Scholar 

  • Cooper, G. F., Herskovitz, E. (1991): A Bayesian Method for constructing Bayesian Belief Networks from Databases, in: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, LA, 86–94.

    Google Scholar 

  • Cowell, R. G., Dawid, A. P., Lauritzen, S. L., Spiegelhalter, D. J. (1999): Probabilistic Networks and Expert Systems, Springer-Verlag, New York.

    Google Scholar 

  • Cox, D. R., Wermuth, N. (1993): Linear Dependencies Represented in Chain Graphs, Statistical Science, Vol 8, No. 3, 204 - 18.

    Article  Google Scholar 

  • Dawid, A. P. (1979): Conditional Independence in Statistical Theory, Journal of the Royal Statistical Society, Ser. B. 41, 1 - 31.

    Google Scholar 

  • De Campos, L. M., Huete, J. F. (2000): Approximating Causal Orderings for Bayesian Networks using Genetic Algorithms and Simulated Annealing, in: Proceedings 8th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems Universidad Politécnica de Madrid, Madrid, Vol. I, 333 - 40.

    Google Scholar 

  • Edwards, D. (1995): Introduction to Graphical Modelling, New York.

    Google Scholar 

  • Geiger, D., Verma, T. S., Pearl, J. (1990): Identifying Independence in Bayesian Networks, Networks 20, 507–34.

    Article  Google Scholar 

  • Heckerman, D. (1995): A Tutorial on Learning with Bayesian Networks, Technical Report MSR-TR-95–06, Microsoft Research, Redmond.

    Google Scholar 

  • Heckerman, D., Geiger, D. Chickening, D. M. (1994): Learning Bayesian networks: The Combination of Knowledge and Statistical Data. Microsoft Research, Technical Report MSR-TR-94–09, Redmond.

    Google Scholar 

  • Heckerman, D., Meek, C., Cooper, G. F. (1999): A Bayesian Approach to Causal Discovery, in: Glymour, C., Cooper, G. F. (eds.), Computation, Causation, and Discovery, MIT Press, Menlo Park, 141 - 65.

    Google Scholar 

  • Hunscher, M. (1998): Abhängigkeitsanalyse unter Einbeziehung exogener Informationen als Data-Mining Instrument, Dissertation, Friedrich-SchillerUniversität Jena, Jena.

    Google Scholar 

  • Jordan, M. I. (1998): Learning in Graphical Models, (Editor), Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kischka, P. (2000): Graphentheoretische Modelle in der Statistik, in: Voss, H. (ed.), Taschenbuch der Statistik, Leipzig.

    Google Scholar 

  • Kischka, P., Eherler, D. (1999): Causal Graphs and Unconfoundedness, Diskussionspapier, Reihe B, Nr. 99/5, Friedrich-Schiller-Universität Jena, Jena.

    Google Scholar 

  • Kischka, P., Eherler, D. (2000): Uncounfounded Effects Derived from Graphical Structures, in Proceedings 8th International Conference on Information Processing and Management of Uncertainty in Knowledge Based Systems Universidad Politécnica de Madrid, Madrid, Vol. III, 1278–84.

    Google Scholar 

  • Lauritzen, S. L. (1996): Graphical Models, Clarendon Press, Oxford.

    Google Scholar 

  • Lauritzen, S. L., Dawid, A. P., Larsen, B. N., Leimer, H. G. (1990): Independence Properties of Directed Markov Fields, Networks 20, 491–505.

    Article  Google Scholar 

  • Lauritzen, S. L., Wermuth, N. (1984): Mixed Interaction Models, Technical Report R-84–8, Institute of Electronic Systems, Aalborg University.

    Google Scholar 

  • Madigan, D., Rafberg, A. (1994): Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam’s Window. Journal of the Amer. Stat. Ass., 89 (428), 1535–46.

    Article  Google Scholar 

  • Meek, C. (1995a): Relating Graphical Framework; Undirected, Directed Acyclic, and Chain Graph Models, Carnegie Mellon University, Technical Report CMU-Phil-64, Pittsburgh.

    Google Scholar 

  • Meek, C. (1995b): Strong Completeness and Faithfulness in Bayesian Networks.In Besnard, P., Hanks, S. (eds.), Uncertainty in Artificial Intelligence: Proceedings of the 11thConference, Morgan Kaufinann, San Francisco, 403–410.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M., Teller, A. U., Teller, E. (1953): Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, 21, 1087–92.

    Article  Google Scholar 

  • Murphy, K. P. (2000): Bayesian Network Software Packages, http://HTTP.CS.Berkeley.EDU/-murphykBayes/bnsoft.html/-murphykBayes/bnsoft.html

    Google Scholar 

  • Pearl, J. (1988): Probabilistic Inference in Intelligent Systems, Morgan Kaufinann, San Mateo.

    Google Scholar 

  • Pearl, J. (1993): Comment: Graphical Models, Causality, and Intervention, Statistical Science, Vol. 8, 266–9.

    Article  Google Scholar 

  • Pearl, J. (1996): A Causal Calculus for Statistical Research, in: Fisher, D., Lenz, H. J. (eds.), Learning from Data, Springer-Verlag, New York, 23 - 33.

    Google Scholar 

  • Pearl, J. (1998): Why there is no Statistical Test of Confounding, Why many think is, and why the are almost right, Technical Report R - 256, Cognitive Systems Laboratory, UCLA, Los Angeles.

    Google Scholar 

  • Pearl, J. (2000): Causality, Models, Reasoning, and Inference, Cambridge University Press, Cambridge.

    Google Scholar 

  • Pearl, J., Paz, A. (1985): Graphoids: A Graph Based Logic for Reasoning About Relevance Relations, Technical Report R-93 - III, Cognitive Systems Laboratory, UCLA, Los Angeles.

    Google Scholar 

  • Reichenbach, H. (1956): The Direction of Time, University of California Press, Berkeley.

    Google Scholar 

  • Rosenbaum, P, Rubin, D. (1983): The Central Role of Propensity Score in Observational Studies for Causal Effects, Biometrics 70, 41–55.

    Article  Google Scholar 

  • Sangüsa, R., Cortés, U (1997): Learning Causal Networks from Data: A Survey and a New Algorithm for Reasoning Possibilistic Causal Networks, Al Communications, Vol. 10, No. 1, 31–61.

    Google Scholar 

  • Scheines, R., Spirtes, P., Glymour C., Meek, C. (1994): Tetrad II -Tools for Causal Modeling, Lawrence Erlbaum Ass., New York.

    Google Scholar 

  • Scheines, R., Spirtes, P., Glymour, C., Meek, C., Richardson, T. (1998): The Tetrad Project: Constraint Based Aids to Causal Models Specification, Multivariate, Behavioural Research, 33, 65–117.

    Article  Google Scholar 

  • Shachter, R. D. (1986): Evaluating Influence Diagrams, Operations Research 34, 6, 871–82.

    Article  Google Scholar 

  • Singh, M., Valtorta, M. (1993): An Algorithm for the Construction of Bayesian Network Structure from Data, in: Proceedings of the Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers, San Francisco, 259–65.

    Google Scholar 

  • Spirtes, P., Glymour, C. (1991): An Algorithm for Fast Recovery of Sparse Causal Graphs. Social Science Computer Review, 9, 62–72.

    Article  Google Scholar 

  • Spirtes, P., Meek, C. (1995): Learning Bayesian Networks with Discrete Variables form Data. In: Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining, AAAI Press., Menlo Park, 294–9.

    Google Scholar 

  • Spirtes, P., Meek, C., Richardson, T. (1999): An Algorithm for Causal Inference in the Presence of Latent Variables and Selection Bias, in: Glymour, C., Cooper, G. F. (eds.), Computation, Causation, and Discovery, MIT Press, Menlo Park, 211–52.

    Google Scholar 

  • Spohn, W. (1980): Stochastic Independence, Causal Independence, and Shieldability, Journal of Philosophical Logic, 9, 73–99.

    Article  Google Scholar 

  • Steck, H., Tresp, V. (1999): Bayesian Belief Networks for Data Mining, Proceedings, 2nd Workshop, DMDW99, University of Magdeburg, Germany, 145–54.

    Google Scholar 

  • Wermuth, N., Lauritzen, S. L. (1990): On Substantive Research Hypothesis, Conditional Independence Graphs and Graphical Chain Models, Journal of the Royal Statistical Society, Ser. B. 52, No. 1, 21–50.

    Google Scholar 

  • Whittacker, J. (1990): Graphical Models in Applied Multivariate Statistics, Wiley, Chichester.

    Google Scholar 

  • Wright, S. (1921): Correlation and Causation, Journal of Agricultural Research,20, 557–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eherler, D., Kischka, P. (2001). Decision Making Based on Causal Graphs. In: Kischka, P., Möhring, R.H., Leopold-Wildburger, U., Radermacher, FJ. (eds) Models, Methods and Decision Support for Management. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57603-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57603-4_18

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-642-63306-5

  • Online ISBN: 978-3-642-57603-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics