Skip to main content

Magnetresonanzspektroskopie des Herzens

  • Chapter
  • 64 Accesses

Zusammenfassung

Signalquelle für die MR-Bildgebung sind ausschließlich die Wasserstoffkerne von Wasserund Fettmolekülen. Im Gegensatz dazu erlaubt die MR-Spektroskopie (MRS) die Untersuchung zusätzlicher Atomkerne, solange diese eine ungerade Anzahl von Protonen oder Neutronen oder von beiden im Atomkern besitzen. Atomkerne, die für metabolische MRS-Untersuchungen von Interesse sind, zeigt Tabelle 22.1. Im Mittelpunkt stehen die Kerne 1H (Protonen anderer Metaboliten als Wasser-und Fettmoleküle), 13C, 19F, 23Na, 31P, 39K und 87Rb. Prinzipiell würden sich eine Vielzahl von klinischen Fragestellungen mit der kardialen MRS untersuchen lassen. Die Hauptlimitation der Methode liegt allerdings in der geringen Sensitivität der Signaldetektion, da die mit der MRS untersuchten Atomkerne eine wesentlich geringere intrinsische MR-Sen-sitivität als 1H haben und zudem in um mehrere Größenordnungen geringeren Konzentrationen vorliegen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Auffermann W, Chew WM, Wolfe CL, Tavares NJ, Parmley WW, Semelka RC, Donnelly T, Chatterjee K, Higgins CB (1991) Normal and diffusely abnormal myocardium in humans: functional and metabolic characterization with P-31 MR spectroscopy and cine MR imaging. Radiology 179:253–259

    PubMed  CAS  Google Scholar 

  2. Bittl JA, Ingwall JS (1985) Reaction rates of creatine kinase and ATP synthesis in the isolated rat heart. A 31P NMR magnetization transfer study. J Biol Chem 260:3512

    PubMed  CAS  Google Scholar 

  3. Bittl JA, Ingwall JS (1987) Intracellular high-energy phosphate transfer in normal and hyper-trophied myocardium. Circulation 75:I 96–101

    Article  Google Scholar 

  4. Bottomley PA (1994) MR spectroscopy of the human heart: the status and the challenges. Radiology 191:593–612

    PubMed  CAS  Google Scholar 

  5. Bottomley PA, Hardy CJ (1992) Mapping creatine kinase reaction rates in human brain and heart with 4 tesla saturation transfer 31P NMR. J Magn Reson 99:443–448

    CAS  Google Scholar 

  6. Bottomley PA, Weiss RG (1998) Non-invasive magnetic-resonance detection of creatine depletion in non-viable infarcted myocardium. Lancet 351:714–718

    Article  PubMed  CAS  Google Scholar 

  7. Bottomley PA, Hardy CJ, Roemer PB (1990) Phosphate metabolite imaging and concentration measurements in human heart by nuclear magnetic resonance. Magn Reson Med 14:425–434

    Article  PubMed  CAS  Google Scholar 

  8. Bottomley PA, Weiss RG, Hardy CJ, Baumgartner WA (1991) Myocardial high-energy phosphate metabolism and allograft rejection in patients with heart transplants. Radiology 181:67–75

    PubMed  CAS  Google Scholar 

  9. Bottomley PA, Atalar E, Weiss RG (1996) Human cardiac high-energy phosphate metabolite concentrations by ID-resolved NMR spectroscopy. Magn Reson Med 35:664–670

    Article  PubMed  CAS  Google Scholar 

  10. Buchthal SD, Merz CN, Rogers WJ, Pepine CJ, Reichek N, Sharaf BL, Reis S, Kelsey SF, Pohost GM (2000) Abnormal myocardial phosphorus-31 nuclear magnetic resonance spectroscopy in women with chest pain but normal coronary angiograms. N Eng J Med 342:829–835

    Article  CAS  Google Scholar 

  11. Clarke K, O’Connor AJ, Willis RJ (1987) Temporal relation between energy metabolism and myocardial function during ischemia and reper-fusion. Am J Physiol 253:H412–421

    PubMed  CAS  Google Scholar 

  12. Clarke K, Stewart LC, Neubauer S, Balschi JA, Smith TW, Ingwall JS, Nedelec JF, Humphrey SM, Kleber AG, Springer CS Jr (1993) Extracellular volume and transsarcolemmal proton movement during ischemia and reperfusion: a 31P NMR spectroscopic study of the isovolumic rat heart. NMR Biomed 6:278–286

    Article  PubMed  CAS  Google Scholar 

  13. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK (1991) Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet 338:973–976

    Article  PubMed  CAS  Google Scholar 

  14. De Layre JL, Ingwall JS, Malloy C, Fossel ET (1981) Gated sodium-23 nuclear magnetic resonance images of an isolated perfused working rat heart. Science 212:935–936

    Article  Google Scholar 

  15. de Roos A, Doornbos J, Luyten PR, Oosterwaal LJ, vander Wall EE, den Hollander JA (1992) Cardiac metabolism in patients with dilated and hypertrophic cardiomyopathy: assessment with proton-decoupled P-31 MR spectroscopy. J Magn Reson Imaging 2:711–719

    Article  PubMed  Google Scholar 

  16. Flameng W, Vanhaecke J, Van Belle H, Borgers M, De Beer L, Minten J (1987) Relation between coronary artery stenosis and myocardial purine metabolism, histology and regional function in humans. J Am Coll Cardiol 9:1235–1242

    Article  PubMed  CAS  Google Scholar 

  17. Forsen S, Hofman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892–2901

    Article  CAS  Google Scholar 

  18. Fraser CD Jr, Chacko VP, Jacobus WE, Mueller P, Soulen RL, Hutchins GM, Reitz BA, Baumgartner WA (1990) Early phosphorus 31 nuclear magnetic resonance bioenergetic changes potentially predict rejection in heterotopic cardiac allografts. J Heart Transplant 9:197–204

    PubMed  Google Scholar 

  19. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G (1991) Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J 122:795–801

    Article  PubMed  CAS  Google Scholar 

  20. Horn M, Weidensteiner C, Lanz T, Neubauer S, von Kienlin M (1998) Myocardial Na+ content after infarction during scar development. Magma 6:179–180

    PubMed  CAS  Google Scholar 

  21. Ingwall JS (1982) Phosphorus nuclear magnetic resonance spectroscopy of cardiac and skeletal muscles. Am J Physiol 242:H729–744

    PubMed  CAS  Google Scholar 

  22. Ingwall JS (1995) How high does intracellular sodium rise during acute myocardial ischaemia? A view from NMR spectroscopy. Cardiovascular Research 29:2

    Google Scholar 

  23. Jung WI, Sieverding L, Breuer J, Hoess T, Widmaier S, Schmidt O, Bunse M, van Erckelens F, Apitz J, Lutz O, Dietze GJ (1998) 31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. Circulation 97:2536–2542

    Article  PubMed  CAS  Google Scholar 

  24. Kim RJ, Lima JAC, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95:1877–1885

    Article  PubMed  CAS  Google Scholar 

  25. Kreutzer U, Jue T (1991) 1H-nuclear magnetic resonance deoxymyoglobin signal as indicator of intracellular oxygenation in myocardium. Am J Physiol 261:H 2091–2097

    CAS  Google Scholar 

  26. Lamb HJ, Beyerbacht HP, van der Laarse A, Stoel BC, Doornbos J, van der Wall EE, de Roos A (1999) Diastolic Dysfunction in Hypertensive Heart Disease Is Associated With Altered Myocardial Metabolism. Circulation 99:2261–2267

    Article  PubMed  CAS  Google Scholar 

  27. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res 78:893–902

    Article  PubMed  CAS  Google Scholar 

  28. Meininger M, Landschütz W, Beer M, Seyfarth T, Horn M, Pabst T, Haase A, Hahn D, Neubauer S, von Kienlin M (1999) Concentrations of human cardiac phosphorus metabolites determined by SLOOP 31P NMR spectroscopy. MRM 41:657–663

    Article  CAS  Google Scholar 

  29. Menon RS, Hendrich K (1992) 31P NMR spectroscopy of human heart at 4T: detection of substantially uncontaminated cardiac spectra and differentiation of subepicardium and sub-endocardium. Magn Reson Med 26:368–376

    Article  PubMed  CAS  Google Scholar 

  30. Nascimben L, Friedrich J, Liao R, Pauletto P, Pessina AC, Ingwall JS (1995) Enalapril treatment increases cardiac performance and energy reserve via the creatine kinase reaction in myocardium of Syrian myopathic hamsters with advanced heart failure. Circulation 91:1824–1833

    Article  PubMed  CAS  Google Scholar 

  31. Neubauer S (1999) High-energy phosphate metabolism in normal, hypertrophied and failing human myocardium. Heart Failure Reviews 4:269–280

    Article  CAS  Google Scholar 

  32. Neubauer S, Hamman BL, Perry SB, Bittl JA, Ingwall JS (1988) Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Circulation Research 63:1–15

    Article  PubMed  CAS  Google Scholar 

  33. Neubauer S, Ertl G, Krahe T, Schindler R, Hillenbrand H, Lackner K, Kochsiek K (1991) Experimentelle und klinische Möglichkeiten der MR-Spektroskopie des Herzens. Z Kardiol 80:25–36

    PubMed  CAS  Google Scholar 

  34. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K, Ertl G (1992) 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation 86:1810–1818

    Article  PubMed  CAS  Google Scholar 

  35. Neubauer S, Horn M, Naumann A, Tian R, Hu K, Laser M, Friedrich J, Gaudron P, Schnackerz K, Ingwall JS et al. (1995) Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 95:1092–1100

    Article  PubMed  CAS  Google Scholar 

  36. Neubauer S, Horn M, Pabst T, Gödde M, Lübke D, Illing B, Hahn D, Ertl G (1995) Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. Eur Heart J 16(Suppl 0):115–118

    Article  PubMed  CAS  Google Scholar 

  37. Neubauer S, Horn M, Pabst T, Harre K, Strömer H, Bertsch G, Sandstede J, Ertl G, Hahn D, Kochsiek K (1997) Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. J Investig Med 45:453–462

    PubMed  CAS  Google Scholar 

  38. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96:2190–2196

    Article  PubMed  CAS  Google Scholar 

  39. Okada MKM, Inubushi T, Kinoshita M (1998) Influence of aging or left ventricular hypertrophy on the human heart: Contents of phosphorus metabolites measured by 31P MRS. MRM 39:772–782

    Article  CAS  Google Scholar 

  40. Pabst T, Sandstede J, Beer M, Kenn W, von Kienlin M, Neubauer S, Hahn D (in press) Optimization of ECG-triggered 3D 23Na MRI of the human heart. Magn Reson Med

    Google Scholar 

  41. Pluim BM, Lamb HJ, Kayser HW, Leujes F, Beyerbacht HP, Zwinderman AH, van der Laarse A, Vliegen HW, de Roos A, van der Wall EE (1998) Functional and metabolic evaluation of the athlete’s heart by magnetic resonance imaging and dobutamine stress magnetic resonance spectroscopy. Circulation 97:666–672

    Article  PubMed  CAS  Google Scholar 

  42. Pohmann R, Von Kienlin M (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weigthed CSI. Magn Reson Med 45:817–826

    Article  PubMed  CAS  Google Scholar 

  43. Rajagopalan B, Blackledge MJ, McKenna WJ, Bolas N, Radda GK (1987) Measurement of phosphocreatine to ATP ratio in normal and diseased human heart by 31P magnetic resonance spectroscopy using the rotating frame-depth selection technique. Ann N Y Acad Sci 508:321–332

    Article  PubMed  CAS  Google Scholar 

  44. Schaefer S, Gober JR, Schwartz GG, Twieg DB, Weiner MW, Massie B (1990) In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. Am J Cardiol 65:1154–1161

    Article  PubMed  CAS  Google Scholar 

  45. Schneider J, Fekete E, Weisser A, Neubauer S, von Kienlin M (2000) Reduced (1)H-NMR visibility of creatine in isolated rat hearts. Magn Reson Med 43:497–502

    Article  PubMed  CAS  Google Scholar 

  46. Spirito P, Seidman CE, McKenna WJ, Maron BJ (1997) The management of hypertrophic cardiomyopathy. New Engl J Med 336/11:775–785

    Article  Google Scholar 

  47. Springer CS Jr, Pike MM, Balschi JA, Chu SC, Frazier JC, Ingwall JS, Smith TW (1985) Use of shift reagents for nuclear magnetic resonance studies of the kinetics of ion transfer in cells and perfused hearts. Circulation 72:Iv89–93

    PubMed  CAS  Google Scholar 

  48. Ugurbil K, Petein M, Madian R, Michurski S, Cohn JN, From AH (1984) High resolution proton NMR studies of perfused rat hearts. FEBS letters 167:73–78

    Article  PubMed  CAS  Google Scholar 

  49. Van Dobbenburgh JO, Lahpor JR, Woolley SR, de Jonge N, Klopping C, Van Echteld CJ (1996) Functional recovery after human heart transplantation is related to the metabolic condition of the hypothermic donor heart. Circulation 94:2831–2836

    Article  PubMed  Google Scholar 

  50. von Kienlin M, Mejia R (1991) Spectral localization with optimal pointspread function. Magn Reson Med 94:268–287

    Google Scholar 

  51. Von Kienlin M, Rösch C, Le Fur Y, Behr W, Roder F, Haase A, Horn M, Illing B, Hu K, Ertl G, Neubauer S (1998) Three-dimensional 31P magnetic resonance spectroscopic imaging of regional high-energy phosphate metabolism in injured rat heart. Magn Reson Med 39:731–741

    Article  Google Scholar 

  52. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The „phosphocreatine circuit“ for cellular energy homeostasis. Biophys J 281:21–40

    CAS  Google Scholar 

  53. Weiss RG, Bottomley PA, Hardy CJ, Gerstenblith G (1990) Regional myocardial metabolism of high-energy phosphates during isometric exercise in patients with coronary artery disease [see comments]. N Engl J Med 323:1593–1600

    Article  PubMed  CAS  Google Scholar 

  54. Yabe T, Mitsunami K, Okada M, Morikawa S, Inubushi T, Kinoshita M (1994) Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. Circulation 89:1709–716

    Article  PubMed  CAS  Google Scholar 

  55. Yabe T, Mitsunami K, Inubushi T, Kinoshita M (1995) Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy [see comments]. Circulation 92:15–23

    Article  PubMed  CAS  Google Scholar 

  56. Zhang J, Merkle H, Hendrich K, Garwood M, From AH, Ugurbil K, Bache RJ (1993) Bioenergetic abnormalities associated with severe left ventricular hypertrophy. J Clin Invest 92:993–1003

    Article  PubMed  CAS  Google Scholar 

  57. Zhang J, Wilke N, Wang Y, Zhang Y, Wang C, Eijgelshoven MH, Cho YK, Murakami Y, Ugurbil K, Bache RJ, From AH (1996) Functional and bioenergetic consequences of postinfarction left ventricular remodeling in a new porcine model. MRI and 31 P-MRS study. Circulation 94:1089–1100

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neubauer, S. (2002). Magnetresonanzspektroskopie des Herzens. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Kardiovaskuläre Magnetresonanztomographie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57535-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57535-8_22

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63291-4

  • Online ISBN: 978-3-642-57535-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics