Skip to main content
  • 63 Accesses

Zusammenfassung

Der heutige Referenzstandard zur Darstellung der Herzkranzgefäße ist die Herzkatheter-untersuchung, ein invasives Verfahren mit einer Restinzidenz von ernsthaften Komplikationen in ungefähr 1,7% der Fälle [18]. Außerdem ist eine Herzkatheteruntersuchung relativ kostenintensiv, Patient und vor allem medizinisches Personal sind belastender Röntgenstrahlung ausgesetzt, und das Verfahren kann für den Patienten sehr unangenehm sein. Die Magnetresonanztomographie (MR) als nichtinvasives Verfahren bietet entscheidende Vorteile: Sie ist nach heutigem Wissensstand risikofrei, kann ohne Röntgenstrahlung durchgeführt werden und ist im Vergleich zum Herzkatheter kostengünstig, darüber hinaus ist ein verbesserter Patientenkomfort gewährleistet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adams DF (1982) How safe is the coronary angiogram? Cardiovasc Intervent Radiol 5:168–173

    Article  PubMed  CAS  Google Scholar 

  2. Bittl JAL (1997) DC Coronary Arteriography. In: Braunwald E (ed) Heart Disease. A Textbook of Cardiovascular Medicine, 5 th ed. W.B. Saunders Company, Philadelphia, PA, pp 240–272

    Google Scholar 

  3. Boernert P et al (2001) Superiority of spiral imaging for 3D coronary MR angiography. Soc Cardiovac Magn Res (abstract)

    Google Scholar 

  4. Botnar RM et al (1999) Improved coronary artery definition with T2-weighted free-breathing 3D-coronary MRA. Circulation 99:3139–3148

    Article  PubMed  CAS  Google Scholar 

  5. Brittain JH et al (1995) Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 33:689–696

    Article  PubMed  CAS  Google Scholar 

  6. Cline HE et al (1991) Fast MR cardiac profiling with two-dimensional selective pulses. Magn Reson Med 17:390–401

    Article  PubMed  CAS  Google Scholar 

  7. Danias PG, et al (1998) Navigator assessment of breath-hold duration: impact of supplemental oxygen and hyperventilation. AJR Am J Roentgenol 171:395–397

    Article  PubMed  CAS  Google Scholar 

  8. Duerinckx AJ, Urman MK (1994) Two-dimensional coronary MR angiography: analysis of initial clinical results. Radiology 193:731–738

    PubMed  CAS  Google Scholar 

  9. Edelman RR, et al (1991) Fast selective black blood MR imaging. Radiology 181:655–660

    PubMed  CAS  Google Scholar 

  10. Edelman RR et al (1991) Coronary arteries: breath-hold MR angiography. Radiology 181: 641–643

    PubMed  CAS  Google Scholar 

  11. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263

    PubMed  CAS  Google Scholar 

  12. Galjee MA et al (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts. An angiographically controlled study. Circulation 93:660–666

    Article  PubMed  CAS  Google Scholar 

  13. Goldfarb JW, Edelman RR (1998) Coronary arteries: breath-hold, gadolinium-enhanced, three-dimensional MR angiography. Radiology 206: 830–834

    PubMed  CAS  Google Scholar 

  14. Heid O (1997) True FISP Cardiac Fluoroscopy. Proceedings of the International Society for Magnetic Resonance in Medicine (abstract) 1:320

    Google Scholar 

  15. Hofman MB et al (1995) MRI of coronary arteries: 2D breath-hold vs 3D respiratory-gated acquisition. J Comput Assist Tomogr 19:56–62

    Article  PubMed  CAS  Google Scholar 

  16. Hofman MB et al (1998) Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imaging 8:568–576

    Article  PubMed  CAS  Google Scholar 

  17. Jara H et al (1999) Voxel sensitivity function description of flow-induced signal loss in MR imaging: implications for black-blood MR angiography with turbo spin-echo sequences. Magn Reson Med 41:575–590

    Article  PubMed  CAS  Google Scholar 

  18. Johnson LW et al (1989) Coronary arteriography 1984-1987: a report of the Registry of the Society for Cardiac Angiography and Interventions. I. Results and complications. Cathet Cardiovasc Diagn 17:5–10

    Article  PubMed  CAS  Google Scholar 

  19. Li D et al (1993) Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology 187: 401–406

    PubMed  CAS  Google Scholar 

  20. Li D et al (1998) Three-Dimensional MRI of coronary arteries using an intravascular contrast agent. Magn Reson Med 39:1014–1018

    Article  PubMed  CAS  Google Scholar 

  21. Manning WJ, Edelman RR (1993) Magnetic resonance coronary angiography. Magn Reson Q 9:131–151

    PubMed  CAS  Google Scholar 

  22. Manning WJ et al (1993) A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 328:828–832

    Article  PubMed  CAS  Google Scholar 

  23. McConnell MV et al (1997) Prospective adaptive navigator correction for breath-hold MR coronary angiography. Magn Reson Med 37:148–152

    Article  PubMed  CAS  Google Scholar 

  24. McConnell MV et al (2000) Clinical role of coronary magnetic resonance angiography in the diagnosis of anomalous coronary arteries. JCMR 2:217–224

    CAS  Google Scholar 

  25. Meyer CH et al (1992) Fast spiral coronary artery imaging. Magn Reson Med 28:202–213

    Article  PubMed  CAS  Google Scholar 

  26. Müller MF et al (1997) Proximal coronary artery stenosis: three-dimensional MRI with fat saturation and navigator echo. J Magn Reson Imaging 7:644–651

    Article  PubMed  Google Scholar 

  27. Oshinski JN et al (1996) Two-dimensional coronary MR angiography without breath holding. Radiology 201:737–743

    PubMed  CAS  Google Scholar 

  28. Pennell DJ et al (1993) Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J 70:315–326

    Article  PubMed  CAS  Google Scholar 

  29. Post JC et al (1995) Protocol for two-dimensional magnetic resonance coronary angiography studied in three-dimensional magnetic resonance data sets. Am Heart J 130:167–173

    Article  PubMed  CAS  Google Scholar 

  30. Post JC et al (1996) Three-dimensional respiratory-gated MR angiography of coronary arteries: comparison with conventional coronary angiography. AJR Am J Roentgenol 166:1399–1404

    Article  PubMed  CAS  Google Scholar 

  31. Pruessmann KP et al (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962

    Article  PubMed  CAS  Google Scholar 

  32. Scheidegger MB et al (1994) Magnetic resonance angiography: methods and its applications to the coronary arteries. Technol Health Care 2:255–265

    PubMed  CAS  Google Scholar 

  33. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603

    Article  PubMed  CAS  Google Scholar 

  34. Stuber M et al (1999) Double oblique free-breathing high-resolution 3D coronary MRA. J Am Coll Cardiol 34:524–531

    Article  PubMed  CAS  Google Scholar 

  35. Stuber M et al (1999) Submillimeter three-dimensional coronary MR angiography with realtime navigator correction: comparison of navigator locations. Radiology 212:579–587

    PubMed  CAS  Google Scholar 

  36. Stuber M et al (1999) Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10:790–799

    Article  PubMed  CAS  Google Scholar 

  37. Stuber M et al (2001) Free Breathing Black-Blood Coronary Magnetic Resonance Angiography: Initial Results. Radiology 219:278–283

    PubMed  CAS  Google Scholar 

  38. Stuber M et al (2001) Three-dimensional high-resolution fast spin-echo coronary magnetic resonance angiography. Magn Reson Med (in press)

    Google Scholar 

  39. Taylor AM et al (1999) Differences between normal subjects and patients with coronary artery disease for three different MR coronary angiography respiratory suppression techniques [In Process Citation]. J Magn Reson Imaging 9:786–793

    Article  PubMed  CAS  Google Scholar 

  40. van Geuns RJ et al (2000) MR coronary angiography with breath-hold targeted volumes: preliminary clinical results. Radiology 217:270–277

    PubMed  Google Scholar 

  41. White RD et al (1988) Coronary artery bypass grafts: evaluation of patency with cine MR imaging. AJR Am J Roentgenol 150:1271–1274

    Article  PubMed  CAS  Google Scholar 

  42. Wielopolski PA et al (1998) Breath-hold coronary MR angiography with volume targeted imaging. Radiology 209:209–219

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stuber, M. (2002). Koronardarstellung. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Kardiovaskuläre Magnetresonanztomographie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57535-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57535-8_20

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63291-4

  • Online ISBN: 978-3-642-57535-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics