Skip to main content

Quantifizierung der Myokardperfusion mit der Magnetresonanztomographie

  • Chapter
Kardiovaskuläre Magnetresonanztomographie

Zusammenfassung

Es ist bekannt, dass der koronarangiographisch bestimmte Stenosegrad häufig nicht mit der tatsächlichen Perfusionsminderung des Myokards korreliert [39]. Zur objektiveren Beurteilung einer Stenose hat sich daher die Bestimmung der koronaren Flussreserve, die sich aus dem Quotienten aus basalem und maximal hyperämischem Fluss errechnet, als Referenzstandard etabliert [10, 38].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Al Saadi N et al (2000) Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation 101:1379–1383

    Article  Google Scholar 

  2. Al Saadi N et al (2000) Improvement of myocardial perfusion reserve early after coronary intervention: assessment with cardiac magnetic resonance imaging [In Process Citation]. J Am Coll Cardiol 36:1557–1564

    Article  Google Scholar 

  3. Bassingthwaighte JB, Goresky CA (1984) Modeling in the analysis of solute and water exchange in the microvasculature. Renkin EM, Michael CC (eds) Bethesda MD Handbook of Physiology. Oxford University Press, pp 549–626

    Google Scholar 

  4. Betriu A et al (1982) Angiographic findings 1 month after myocardial infarction: a prospective study of 259 survivors. Circulation 65:1099–1105

    Article  PubMed  CAS  Google Scholar 

  5. Blardi P et al (1993) Pharmacokinetics of exogenous adenosine in man after infusion. Eur J Clin Pharmacol 44:505–507

    Article  PubMed  CAS  Google Scholar 

  6. Burstein D, Taratuta E, Manning WJ (1991) Factors in myocardial „perfusion“ imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med 20:299–305

    Article  PubMed  CAS  Google Scholar 

  7. Califf RM (1995) Restenosis: the cost to society. Am Heart J 130:680–684

    Article  PubMed  CAS  Google Scholar 

  8. Carlsen J et al (2000) Myocardial perfusion scintigraphy as a screening method for significant coronary artery stenosis in cardiac transplant recipients [In Process Citation]. J Heart Lung Transplant 19:873–878

    Article  PubMed  CAS  Google Scholar 

  9. de Roos A et al (1990) Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhanced MR imaging. Radiology 176: 517–521

    PubMed  Google Scholar 

  10. Gallagher KP et al (1982) Myocardial blood flow and function with critical coronary stenosis in exercising dogs. Am J Physiol 243:H698–H707

    PubMed  CAS  Google Scholar 

  11. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33:87–94

    Article  PubMed  CAS  Google Scholar 

  12. Jerosch-Herold M et al (1998) MRI Measurements of Perfusion Reserve in Collateral-Dependent Myocardium of Pigs. Circulation 98:225 [Abstr]

    Google Scholar 

  13. Jerosch-Herold M, Wilke N, Stillman AE (1998) Magnetic resonance quantification of the myocardial perfusion reserve with a Fermi function model for constrained deconvolution. Med Phys 25:73–84

    Article  PubMed  CAS  Google Scholar 

  14. Jerosch-Herold M et al (1999) Direct comparison of an intravascular and an extracellular contrast agent for quantification of myocardial perfusion. Cardiac MRI Group. Int J Card Imaging 15:453–464

    Article  PubMed  CAS  Google Scholar 

  15. Johnson TH and others (1991) Allograft vasculopathy and death in a cardiac transplant patient with angiographically normal coronary arteries. Cathet Cardiovasc Diagn 24:37–40

    Article  PubMed  CAS  Google Scholar 

  16. Keijer JT (2000) Magnetic resonance imaging of regional myocardial perfusion in patients with single-vessel coronary artery disease: quantitative comparison with (201)Thallium-SPECT and coronary angiography. J Magn Reson Imaging 11:607–615

    Article  PubMed  CAS  Google Scholar 

  17. Klocke FJ (1976) Coronary blood flow in man. Prog Cardiovasc Dis 19:117–166

    Article  PubMed  CAS  Google Scholar 

  18. Koenig SH et al (1986) Relaxation of water protons in the intra-and extracellular regions of blood containing Gd(DTPA). Magn Reson Med 3:791–795

    Article  PubMed  CAS  Google Scholar 

  19. Kraitchman DL (1996) Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 35:771–780

    Article  PubMed  CAS  Google Scholar 

  20. Kroll K et al (1996) Modeling regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol 271:H1643–H1655

    PubMed  CAS  Google Scholar 

  21. Kroll K et al (1996) Accuracy of modeling of regional myocardial flows from residue functions of an intravascular indicator. Am J Physiol (Heart Circ Physiol) 40:H1643–H1655

    Google Scholar 

  22. Lauerma K (1997) Multislice MRI in assessment of myocardial perfusion in patients with single-vessel proximal left anterior descending coronary artery disease before and after revascularization. Circulation 96:2859–2860

    Article  PubMed  CAS  Google Scholar 

  23. Muehling O et al (2000) Bestimmung des Endokardialen-/Epikardialen Blutfluss mit Quantitativer First-Pass Magnetresonanztomographie (QMR) bei Patienten nach Orthothoper Herztransplantation. Z Kardiol 8(Suppl 1)

    Google Scholar 

  24. O’Keefe DD et al (1978) Coronary blood flow in experimental canine left ventricular hypertrophy. Circ Res 43:43–51

    Article  PubMed  Google Scholar 

  25. Rechavia E et al (1992) The significance of a dipyridamole induced 99mTc-MIBI perfusion abnormality on single photon emission tomography: a quantitative validation with labelled water and positron emission tomography. Eur J Nucl Med 19:1044–1049

    Article  PubMed  CAS  Google Scholar 

  26. Schwaiger M, Muzik O (1991) Assessment of myocardial perfusion by positron emission tomography. Am J Cardiol 67:35D–43D

    Article  PubMed  CAS  Google Scholar 

  27. Shelton ME et al (1993) Concordance of nutritive myocardial perfusion reserve and flow velocity reserve in conductance vessels in patients with chest pain with angiographically normal coronary arteries. J Nucl Med 34:717–722

    PubMed  CAS  Google Scholar 

  28. Stewart RE (1994) The role of noninvasive cardiac imaging in the evaluation of the postcoronary intervention patient. J Interv Cardiol 7:213–219

    Article  PubMed  CAS  Google Scholar 

  29. Thompson HK (1964) Indicator transit time considered as a gamma variate. Circ Res 14: 502–515

    Article  PubMed  Google Scholar 

  30. Tsekos NV et al (1995) Fast anatomical imaging of the heart and assessment of myocardial perfusion with arrhythmia insensitive magnetization preparation. Magn Reson Med 34:530–536

    Article  PubMed  CAS  Google Scholar 

  31. Uren NG et al (1994) Relation between myocardial blood flow and the severity of coronaryartery stenosis. N Engl J Med 330:1782–1788

    Article  PubMed  CAS  Google Scholar 

  32. Verberne HJ et al (1999) Functional assessment of coronary artery stenosis by doppler derived absolute and relative coronary blood flow velocity reserve in comparison with (99m)Tc MIBI SPECT. Heart 82:509–514

    PubMed  CAS  Google Scholar 

  33. Weis M, Scheldt W (1997) Cardiac allograft vasculopathy: a review. Circulation 96:2069–2077

    Article  PubMed  CAS  Google Scholar 

  34. Wilke N et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384

    PubMed  CAS  Google Scholar 

  35. Wilke N (1993) Contrast-enhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29:485–497

    Article  PubMed  CAS  Google Scholar 

  36. Wilke N et al (2000) MR First-Pass Perfusion Imaging Performs Better in Individual Vessels Then SPECT. Circulation 102:686 [Abstr]

    Google Scholar 

  37. Williams DO et al (1976) Functional significance of coronary collateral vessels in patients with acute myocardial infarction: relation to pump performance, cardiogenic shock and survival. Am J Cardiol 37:345–351

    Article  PubMed  CAS  Google Scholar 

  38. Wilson RF (1991) Assessment of the human coronary circulation using a Doppler catheter. Am J Cardiol 67:44D–56D

    Article  PubMed  CAS  Google Scholar 

  39. Wilson RF, Marcus ML, White CW (1987) Prediction of the physiologic significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 75:723–732

    Article  PubMed  CAS  Google Scholar 

  40. Wilson RF et al (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606

    Article  PubMed  CAS  Google Scholar 

  41. Zaacks SM et al (1999) How well does radionuclide dipyridamole stress testing detect three-vessel coronary artery disease and ischemia in the region supplied by the most stenotic vessel? Clin Nucl Med 24:35–41

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mühling, O.M., Jerosch-Herold, M., Wilke, N.M. (2002). Quantifizierung der Myokardperfusion mit der Magnetresonanztomographie. In: Nagel, E., van Rossum, A.C., Fleck, E. (eds) Kardiovaskuläre Magnetresonanztomographie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57535-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57535-8_17

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63291-4

  • Online ISBN: 978-3-642-57535-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics