Skip to main content

Geschlechtsunterschiede bei der Spiroergometrie

  • Chapter
  • 85 Accesses

Zusammenfassung

Die Spiroergometrie („cardiopulmonary exercise testing“ CPX) mit der Aufzeichnung des Gasaustausches bietet neben dem konventionellen Belastungselektrokardiogramm eine Vielzahl von zusätzlichen Informationen zum integrativen Zusammenspiel von Ventilation, Zirkulation und Muskelstoffwechsel und ermöglicht so die Diagnostik und Differentialdiagnostik der Leistungslimitation. Durch die Bestimmung der Sauerstoffaufnahme bei maximaler Belastung sowie an der anaeroben Schwelle dient sie zudem der objektiven Graduierung der aktuellen kardiopulmonalen Leistungsfähigkeit, unabhängig von der Ursache der Leistungseinschränkung. Die Sauerstoffaufnahme als Maß der kardiopulmonalen Leistungsfähigkeit ist neben Alter, Größe und Gewicht auch abhängig von dem Geschlecht. Frauen erreichen in der Regel niedrigere Werte der Sauerstoffaufnahme als Männer gleichen Alters. Die kardiopulmonale Leistungsfähigkeit nimmt zudem — bei Frauen und Männern gleichermaßen — mit dem Alter ab.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Astrand I, Astrand PO, Hallback I, Kilbom A (1973) Reduction in maximal oxygen uptake with age. J Appl Physiol 35:649–654

    PubMed  CAS  Google Scholar 

  2. Astrand PO (1956) Human physical fitness with special reference to sex and age. American Physiological Society 36:307

    CAS  Google Scholar 

  3. Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    PubMed  CAS  Google Scholar 

  4. Chua TP, Ponikowski P, Harrington D, Anker SD, Webb-Peploe K, Clark AL, Poole-Wilson PA, Coats AJ (1997) Clinical correlates and prognostic significance of the ventilatory response to exercise in chronic heart failure. J Am Coll Cardiol 29:1585–1590

    Article  PubMed  CAS  Google Scholar 

  5. Cooper DM, Barstow TJ, Bergner A, Lee WN (1989) Blood glucose turnover during high-and low-intensity exercise. Am J Physiol 257:E405-E412

    Google Scholar 

  6. Davis JA, Storer TW, Caiozzo VJ (1997) Prediction of normal values for lactate threshold estimated by gas exchange in men and women. Eur J Appl Physiol 76:157–164

    Article  CAS  Google Scholar 

  7. Drinkwater BL, Horvath SM, Wells CL (1975) Aerobic power of females, ages 10 to 68. J Gerontol 30:385–394

    PubMed  CAS  Google Scholar 

  8. Gitt AK (2001) Ergospirometrie. In: Löllgen H, Erdmann E (Hrsg) Ergometrie. Springer, Berlin Heidelberg, S 152–174

    Google Scholar 

  9. Gitt AK, Winter UJ, Fritsch J, Pothoff G, Sedlak M, Ehmanns S, Ostmann H, Hilger HH (1994) [Comparison of four different methods for respiratory determination of the anaerobic threshold in normal people, and heart-and lung patients]. Z Kardiol 83(Suppl 3):37–42

    PubMed  Google Scholar 

  10. Gitt AK, Bergmeier C, Winkler R, Kottmann T, Kleemann T, Kilkowski A, Schwarz A, Schneider S, Taubert G, Senges J (1999) Prognostische Bedeutung der maximalen O2-Aufnahme bei chronischer Herzinsuffizienz. Atemw-Lungenkrkh 25:497–502

    Google Scholar 

  11. Gitt AK, Bergmeier C, Kleemann T, Kilkowski A, Bangert M, Schneider S, Schwarz A, Senges J (2002) The exercise anaerobic threshold and ventilatory efficiency identify heart failure patients for high risk of early death. In: Wasserman K (ed) Cardiopulmonary exercise testing and cardiovascular health. Futura publishing Company, Armonte, New York, in press

    Google Scholar 

  12. Hansen JE, Sue DY, Oren A, Wasserman K (1987) Relation of oxygen uptake to work rate in normal men and men with circulatory disorders. Am J Cardiol 59:669–674

    Article  PubMed  CAS  Google Scholar 

  13. Hansen JE, Casaburi R, Cooper DM, Wasserman K (1988) Oxygen uptake as related to work rate increment during cycle ergometer exercise. Eur J Appl Physiol 57:140–145

    Article  CAS  Google Scholar 

  14. Itoh H (2002) Exercise gas exchange abnormalities in CAD. In: Wasserman K (ed) Cardiopulmonary exercise testing and cardiovascular health. Futura publishing Company, Armonte, New York, in press

    Google Scholar 

  15. Kleber FX, Vietzke G, Wernecke KD, Bauer U, Opitz C, Wensel R, Sperfeld A, Glaser S (2000) Impairment of ventilatory efficiency in heart failure: prognostic impact. Circulation 101:2803–2809

    Article  PubMed  CAS  Google Scholar 

  16. Mancini DM (1997) Cardiopulmonary exercise testing for heart transplant candidate selection. Cardiologia 42:579–584

    PubMed  CAS  Google Scholar 

  17. Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LHJ, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83:778–786

    Article  PubMed  CAS  Google Scholar 

  18. Myers J, Gullestad L, Vagelos R, Do D, Bellin D, Ross H, Fowler MB (1998) Clinical, hemodynamic, and cardiopulmonary exercise test determinants of survival in patients referred for evaluation of heart failure. Ann Intern Med 129:286–293

    PubMed  CAS  Google Scholar 

  19. Osman AF, Mehra MR, Lavie CJ, Nunez E, Milani RV (2000) The incremental prognostic importance of body fat adjusted peak oxygen consumption in chronic heart failure. J Am Coll Cardiol 36:2126–2131

    Article  PubMed  CAS  Google Scholar 

  20. Stelken AM, Younis LT, Jennison SH, Miller DD, Miller LW, Shaw LJ, Kargl D, Chaitman BR (1996) Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol 27:345–352

    Article  PubMed  CAS  Google Scholar 

  21. Stevenson LW (1994) Selection and management of patients for cardiac transplantation. Curr Opin Cardiol 9:315–325

    Article  PubMed  CAS  Google Scholar 

  22. Stevenson LW (1996) Role of Exercise Testing in the Evaluation of Candidates for Cardiac Transplantation. In: Wasserman K (ed) Exercise Gas Exchange in Heart Disease. Futura Publishing Company, Inc., Armonk, New York, pp 271–286

    Google Scholar 

  23. Stevenson LW, Steimle AE, Fonarow G, Kermani M, Kermani D, Hamilton MA, Moriguchi JD, Walden J, Tillisch JH, Drinkwater DC (1995) Improvement in exercise capacity of candidates awaiting heart transplantation. J Am Coll Cardiol 25:163–170

    Article  PubMed  CAS  Google Scholar 

  24. Sue DY, Hansen JE (1984) Normal values in adults during exercise testing. Clin Chest Med 5:89–97

    PubMed  CAS  Google Scholar 

  25. Wasserman K (1967) Lactate and related acid base and blood gas changes during constant load and graded exercise. Can Med Assoc J 96:775–783

    PubMed  CAS  Google Scholar 

  26. Wasserman K (1984) Coupling of external to internal respiration. Am Rev Respir Dis 129:S21-S24

    Google Scholar 

  27. Wasserman K (1984) The anaerobic threshold measurement in exercise testing. Clin Chest Med 5:77–88

    PubMed  CAS  Google Scholar 

  28. Wasserman K (1984) The anaerobic threshold measurement to evaluate exercise performance. Am Rev Respir Dis 129:S35-S40

    Google Scholar 

  29. Wasserman K (1986) The anaerobic threshold: definition, physiological significance and identification. Adv Cardiol 35:1–23

    PubMed  CAS  Google Scholar 

  30. Wasserman K (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation 76:VI29-VI39

    Google Scholar 

  31. Wasserman K, Koike A (1992) Is the anaerobic threshold truly anaerobic? Chest 101:211S–218S

    Article  PubMed  CAS  Google Scholar 

  32. Wasserman K, Whipp BJ (1975) Excercise physiology in health and disease. Am Rev Respir Dis 112:219–249

    PubMed  CAS  Google Scholar 

  33. Wasserman K, Beaver WL, Whipp BJ (1990) Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation 81:1114–1130

    Google Scholar 

  34. Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1994) Principles of Exercise Testing and Interpretation. Lea & Febiger, Malvern, Pennsylvania

    Google Scholar 

  35. Wasserman K, Stringer WW, Casaburi R, Koike A, Cooper CB (1994) Determination of the anaerobic threshold by gas exchange: biochemical considerations, methodology and physiological effects. Z Kardiol 83(Suppl 3):1–12

    PubMed  CAS  Google Scholar 

  36. Working Group on Cardiac Rehabilitation & Exercise Physiology and Working Group on Heart Failure of the European Society of Cardiology (2001) Recommendations for exercise testing in chronic heart failure patients. Eur Heart J 22:37–45

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gitt, A., Senges, J. (2002). Geschlechtsunterschiede bei der Spiroergometrie. In: Brachmann, J., Medau, H.J. (eds) Die koronare Herzkrankheit der Frau. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57534-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57534-1_13

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63290-7

  • Online ISBN: 978-3-642-57534-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics