Skip to main content

Geschichte der Entmarkungskrankheiten

  • Chapter
Demyelinisierende Erkrankungen
  • 43 Accesses

Zusammenfassung

Die multiple Sklerose stellt das Musterbeispiel der Entmarkungskrankheiten dar, und die Geschichte dieser Erkrankungen ist im Wesentlichen die der MS. Zunächst sind drei Verwendungen des Begriffs „Entmarkung“ zu erläutern. Erstens bezeichnet der Begriff in der Neuropathologie im strengen Sinn den Verlust des Myelins bei relativer Erhaltung der Axone. Bei den Läsionen der multiplen Sklerose oder der akuten Encephalomyelitis disseminata z. B. zeigt die Färbung der Axone in der weißen Substanz, dass viele derselben in den Zonen erheblichen Myelinverlustes unversehrt bleiben. Die Pathologen wissen das bereits seit Mitte des 19. Jahrhunderts. Im Bereich der einzelnen Faser ist die Kontinuität des Axons erhalten, doch haben Abschnitte unterschiedlicher Länge ihre Myelinhülle eingebüßt. Diese Art der Läsion wurde sowohl für das zentrale [1,2] als auch für das periphere [3] Nervensystem beschrieben. Allerdings galt die Aufmerksamkeit weniger dem ersteren, wahrscheinlich weil es schwierig ist, einzelne Fasern im ZNS zu isolieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Babinski J (1885 a) Etude anatomique et clinique sur la sclérose en plaques. Masson, Paris

    Google Scholar 

  2. Babinski J (1885b) Recherches sur l’anatomie pathologique de la sclérose en plaques et étude comparative des diverses variétés de scléroses de la moelle. Arch Physiol 5:186–202

    Google Scholar 

  3. Meyer P (1881) Anatomische Untersuchungen über diphtheritische Lähmung. Virchows Arch Pathol Anat Physiol 85:181

    Article  Google Scholar 

  4. Carswell R (1838) Pathological anatomy: illustrations of the elementary forms of disease. Longmans, London

    Google Scholar 

  5. Compston DAS (1988) The 150th anniversary of the first depiction of the lesions of multiple sclerosis. J Neurol Neurosurg Psychiatry 51:806–813

    Google Scholar 

  6. Cruveilhier J (1835) Anatomie pathologique du corps humain: descriptions avec figures lithographiées et coloriées; des diverses altérations morbides dont le corps humain est susceptible. JB Ballière, Paris, p 42

    Google Scholar 

  7. Valentiner W (1856) Über die Sklerose des Gehirns und Rückenmarks. Deutsche Klin 8:147–151

    Google Scholar 

  8. Charcot JM (1868) Histologie de la sclérose en plaques. Gazette des Hôpitaux (Paris) 141:554–558

    Google Scholar 

  9. Ranvier M (1873) Leçons sur l’histologie du système nerveux

    Google Scholar 

  10. Marburg 0 (1906) Die sogenannte „akute Multiple Sklerose“ (Encephalomyelitis periaxialis scleroticans). Jahrb Psychiat Neurol (Leipzig) 27:213–312

    Google Scholar 

  11. Dawson JW (1916) The histology of disseminated sclerosis. Proc R Soc Edinburgh 17:229–416

    Google Scholar 

  12. Prineas JW, Connell F (1979) Remyelination in multiple sclerosis. Ann Neurol 5:22–31

    Article  CAS  PubMed  Google Scholar 

  13. Lassmann H (1983) Comparative neuropathology of chronic experimental allergic encephalomyelitis and multiple sclerosis. Springer, Berlin

    Book  Google Scholar 

  14. Prineas JW, Kwon EE, Cho ES, Sharer LR (1984) Continual breakdown and regeneration of myelin in progressive multiple sclerosis plaques. In: Scheinberg L, Raine CS (eds) Multiple Sclerosis: experimental and clinical aspects. Ann NY Acad Sci 436:11–32

    Google Scholar 

  15. Ghatak NR, Leshner RT, Price AC, Felton WL (1989) Remyelination in the human central nervous system. J Neuropathol Exp Neurol 48:507–518

    Article  CAS  PubMed  Google Scholar 

  16. Prineas JW, Barnard RO, Revesz T et al. (1993) Multiple Sclerosis. Pathology of recurrent lesions. Brain 116:681–693

    Article  PubMed  Google Scholar 

  17. Raine CS (1994) The Dale E McFarlin memorial lecture. The immunology of the multiple sclerosis lesion. Ann Neurol 36:S61–S72

    Article  CAS  PubMed  Google Scholar 

  18. Lucchinetti CF, Bruck W, Rodriguez M, Lassmann H (1996) Distinct patterns of multiple sclerosis pathology indicate heterogeneity in pathogenesis. Brain Pathol 6:259–274

    Article  CAS  PubMed  Google Scholar 

  19. Raff MC, Miller RH, Noble M (1983) A glial progenitor that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396

    Article  CAS  PubMed  Google Scholar 

  20. Raff MC (1989) Glial cell diversification in the rat optic nerve. Science 243:1450–1455

    Article  CAS  PubMed  Google Scholar 

  21. Scolding NJ, Rayner PJ, Sussman J et al. (1995) A proliferative adult human oligodendrocyte progenitor. Neuro Report 6:441–445

    CAS  Google Scholar 

  22. Compston A, Zajicek J, Sussman J et al. (1997) Glial lineages and myelination in the central nervous system. J Anat 190:161–200

    Article  PubMed  Google Scholar 

  23. Denny-Brown D, Brenner C (1944) Lesion in peripheral nerve resulting from compression by spring clip. Arch Neurol Psychiatry 52:1–19

    Article  Google Scholar 

  24. Huxley AF, Stämpfli R (1949) Evidence for saltatory conduction in peripheral myelinated nerve fibres. J Physiol 108:315–339

    Google Scholar 

  25. McDonald WI (1962) Conduction in muscle afferent fibres during experimental demyelination in cat nerve. Acta Neuropathol 1:425–432

    Article  Google Scholar 

  26. McDonald WI (1963) The effects of experimental demyelination on conduction in peripheral nerve: a histological and electrophysiological study. II. Electro-physiological observations. Brain 86:501–524

    Article  CAS  PubMed  Google Scholar 

  27. Hall JI (1967) Studies in demyelinating peripheral nerves in guinea pigs with experimental allergic neuritis: a histological and electrophysiological study. Part 2. Electrophysiological observations. Brain 90:313–332

    Article  CAS  PubMed  Google Scholar 

  28. McDonald WI, Sears TA (1970) The effects of experimental demyelination on conduction in the central nervous system. Brain 93:583–598

    Article  CAS  PubMed  Google Scholar 

  29. Davis FA, Jacobson S (1971) Altered thermal sensitivity in injured and demyelinated nerve: a possible model of temperature effects in multiple sclerosis. J Neurol Neurosurg Psychiatry 34:551–561

    Article  CAS  PubMed  Google Scholar 

  30. Rasminsky M (1973) The effect of temperature on conduction and demyelinated single nerve fibres. Arch Neurol 28:287–292

    Article  CAS  PubMed  Google Scholar 

  31. Bostock H, Sears TA (1978) The internodal axon membrane: electrical excitability and continuous conduction in segmental demyelination. J Physiol (London) 280:273–301

    CAS  Google Scholar 

  32. Smith KJ, Bostock H, Hall SM (1982) Saltatory conduction precedes remyelination in axons demyelinated with lysophosphatidyl choline. J Neurol Sci 54:12–31

    Google Scholar 

  33. Waxman SG, Ritchie JM (1985) Organisation of ion channels in the myelinated nerve fibre. Science 228:1502–1507

    Article  CAS  PubMed  Google Scholar 

  34. Black JA, Felts P, Smith KJ et al. (1991) Distribution of sodium channels in chronically demyelinated spinal cord axons. Immuno-ultrastructural localization and electrophysiological observations. Brain Res 544:59–70

    Article  CAS  PubMed  Google Scholar 

  35. Moll C, Mourre C, Lazdunsky M, Ulrich J (1991) Increase of sodium channels in demyelinated lesions of multiple sclerosis. Brain Res 556:311–316

    Article  CAS  PubMed  Google Scholar 

  36. Bunge MB, Bunge RP, Ris H (1961) Ultrastructural study of remyelination in an experimental lesion in adult cat spinal cord. J Biophys Biochem Cytol 10:67–94

    Article  CAS  PubMed  Google Scholar 

  37. Smith KJ, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383–404

    Article  CAS  PubMed  Google Scholar 

  38. Prineas JW, McDonald WI (1997) Demyelinating diseases. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology. I. 6th edition. Edward Arnold, Sevenoaks, pp 813–896

    Google Scholar 

  39. Dawson GD (1954) A summation technique for the detection of small evoked potentials. Electroencephalogr Clin Neurophysiol 6:65–84

    Article  CAS  PubMed  Google Scholar 

  40. Halliday AM (1967) The electrophysiological study of myoclonus in man. Brain 90:241–284

    Article  CAS  PubMed  Google Scholar 

  41. Halliday AM, McDonald WI, Mushin J (1972) Delayed visual evoked response in optic neuritis. Lancet 1:982–985

    Article  CAS  PubMed  Google Scholar 

  42. Halliday AM, McDonald WI, Mushin J (1973) Visual evoked response in diagnosis of multiple sclerosis. Br Med J 4:661–664

    Article  CAS  PubMed  Google Scholar 

  43. Quincke (1891) Verhandlungen der Cong. f. innere Medizin, p 321

    Google Scholar 

  44. Wynter WE (1891) Four cases of tubercular meningitis in which paracentesis of the theca vertebralis was performed for the relief of fluid pressure. Lancet iii:981–982

    Google Scholar 

  45. Greenfield JG, Carmichael EA (1925) The cerebrospinal fluid in clinical diagnosis. MacMillan & Co, London, p 272

    Google Scholar 

  46. Kabat EA, Moore DH, Landow H (1942) An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J Clin Invest 21:571–577

    Article  CAS  PubMed  Google Scholar 

  47. Young IR, Hall AS, Pallis CA et al. (1981) Nuclear magnetic resonance imaging of the brain in multiple sclerosis. Lancet 2:1063–1066

    Article  CAS  PubMed  Google Scholar 

  48. Lukes SA, Crooks LE, Aminoff MJ et al. (1983) Nuclear magnetic resonance imaging in multiple sclerosis. Ann Neurol 13:592–601

    Article  CAS  PubMed  Google Scholar 

  49. Stewart WA, Hall LD, Berry K, Paty DW (1984) Correlation between NMR scan and brain slice data in multiple sclerosis. Lancet ii:412

    Google Scholar 

  50. Ormerod IEC, Miller DH, McDonald WI et al. (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions: a quantitative study. Brain 110:1579–1616

    Article  PubMed  Google Scholar 

  51. Rindfleisch E (1863) Histologisches Detail zu der grauen Degeneration von Gehirn and Rückenmark. (Zugleich ein Beitrag zu der Lehre von der Entstehung and Verwandlung der Zelle.) Arch Pathol Anat Physiol Klin 26:474–483

    Google Scholar 

  52. Shiraki H (1976) Aetiopathogenesis of multiple sclerosis mainly from the neuropathological viewpoint. In: Multiple sclerosis in Asia. University of Tokyo Press, Tokyo, pp 161–192

    Google Scholar 

  53. Katz D, Taubenberger JK, Cannella B et al. (1993) Correlation between MRI findings and lesion development in chronic active multiple sclerosis. Ann Neurol 34:661–669

    CAS  Google Scholar 

  54. Kermode AG, Thompson AJ, Tofts PS et al. (1990) Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis: pathogenic and clinical implications. Brain 113:1477–1489

    Article  PubMed  Google Scholar 

  55. Davie CA, Hawkins CP, Barker GJ et al. (1994) Serial proton magnetic resonance spectroscopy in acute multiple sclerosis. Brain 117:49–58

    Article  PubMed  Google Scholar 

  56. Youl BD, Turano G, Miller DH et al. (1991) The pathophysiology of acute optic neuritis: an association of gadolinium leakage with clinical and electro-physiological deficits. Brain 114:2437–2450

    Article  PubMed  Google Scholar 

  57. Davie CA, Barker GJ, Webb S et al. (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axon loss. Brain 118:1583–1592

    Article  PubMed  Google Scholar 

  58. Losseff NA, Webb SL, O’Rioradan JI et al. (1996) Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 119:701–708

    Article  PubMed  Google Scholar 

  59. Marie P (1895) Lectures on the diseases of the spinal cord. Translated by M. Lubbock. The New Sydenham Society, London, pp 134–136, 153

    Google Scholar 

  60. McDonald WI (1983) Attitudes to the treatment of multiple sclerosis. Arch Neurol 40:667–670

    Article  CAS  PubMed  Google Scholar 

  61. Sibley WA, Bamford CR, Clark K (1985) Clinical viral infections and multiple sclerosis. Lancet 1:1313–1315

    Google Scholar 

  62. Bramwell B (1903) On the relative frequency of disseminated sclerosis in this country (Scotland and the North of England) and in America. Rev Neurol Psychiatr (Edinburgh) 1:12–17

    Google Scholar 

  63. Davenport CD (1922) Multiple sclerosis from the standpoint of geographic distribution and race. Arch Neurol Psychiatry 8:51–58

    Article  Google Scholar 

  64. Dean G (1949) Disseminated sclerosis in South Africa. Br Med J 1:842–845

    Article  CAS  PubMed  Google Scholar 

  65. Kurtzke JF (1980) Epidemiologic contributions to multiple sclerosis: an overview. Neurol (Minneapolis) 30:61–79

    Article  CAS  Google Scholar 

  66. Kurtzke JF, Hyllested K (1979) Multiple sclerosis in the Faroe Islands (1). Clinical and epidemiological features. Ann Neurol 5:6–21

    Article  CAS  PubMed  Google Scholar 

  67. Ebers GC, Bulman DE, Sadovnik AD et al. (1986) Population-based studies of multiple sclerosis in twins. N Engl J Med 315:1638–1642

    Article  CAS  PubMed  Google Scholar 

  68. Mumford CJ, Wood NW, Kellar-Wood H et al. (1994) The British Isles survey of multiple sclerosis in twins. Neurol 44:11–15

    Article  CAS  Google Scholar 

  69. Bell JI, Lathrop GM (1996) Multiple loci for multiple sclerosis. Nature Genetics 13:377–378

    Article  CAS  PubMed  Google Scholar 

  70. Ebers GC, Kukay K, Bulman DE et al. (1996) A full genome search in multiple sclerosis. Nature Genetics 13:472–476

    Article  CAS  PubMed  Google Scholar 

  71. Haines JL, Terminassian M, Bazyk A et al. (1996) A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex. Nature Genetics 13:464–468

    Article  Google Scholar 

  72. Kuokkanen S, Sundvall M, Terwilliger JD et al. (1996) A putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus EAE2. Nature Genetics 13:477–480

    Article  CAS  PubMed  Google Scholar 

  73. Sawcer S, Jones HB, Feakes R et al. (1996) A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genetics 13:464–468

    Article  CAS  PubMed  Google Scholar 

  74. Firth D (1948) The case of Augustus d’Este. Cambridge University Press, Cambridge, UK

    Google Scholar 

  75. Buzzard EF (1911) The treatment of disseminated sclerosis: a suggestion. Lancet 1:98

    Article  Google Scholar 

  76. Grosz K (1924) Malaria-Behandlung der multiplen Sclerose. Jahrb Psychiatr Neurol 43:198–214

    Google Scholar 

  77. Denny-Brown D (1952) Multiple sclerosis: the clinical problem. Am J Med 12:501–509

    Article  CAS  PubMed  Google Scholar 

  78. McAlpine D, Compston ND, Lumsden CE (1955) Multiple sclerosis. Livingstone E & S, Edinburgh, p 191

    Google Scholar 

  79. Putnam TJ (1937) Evidence of vascular occlusion in multiple sclerosis and „encephalomyelitis“. Arch Neurol Psychiatry 37:1298–1321

    Article  Google Scholar 

  80. Swank RL (1950) Multiple sclerosis: a correlation of its incidence with dietary fat. Am J Med Sci 220:441–450

    Article  Google Scholar 

  81. Baker RWR, Thompson RHS, Zilkha KJ (1963) Fatty acid composition of brain lecithins in multiple sclerosis. Lancet 1:26–27

    Article  CAS  PubMed  Google Scholar 

  82. Paty DW, Cousin HK, Read S, Adlakh AK (1978) Linoleic acid in multiple sclerosis: failure to show any therapeutic benefit. Acta Neurol Scand 58:53–58

    Article  CAS  PubMed  Google Scholar 

  83. Yudkin PL, Ellison GW, Ghezzi A et al. (1991) Overview of azathioprine treatment in multiple sclerosis. Lancet 338:1051–1055

    Article  CAS  PubMed  Google Scholar 

  84. Edan G, Miller D, Clanet M et al. (1997) Therapeutic effect of mitoxantrone combined with methylprednisolone in multiple sclerosis: a randomised multi-centre study of active disease using MRI and clinical criteria. J Neurol Neurosurg Psychiatry 62:112–118

    Article  CAS  PubMed  Google Scholar 

  85. Llewellyn-Smith N, Lai M, Miller DH et al. (1997) Effects of anti-CD4 antibody treatment on lymphocyte subsets and stimulated tumor necrosis factor al-pha production: A study of 29 multiple sclerosis patients entered into a clinical trial of cM-T412. Neurology 48:810–816

    Article  CAS  PubMed  Google Scholar 

  86. Moreau Th, Coles A, Wing M et al. (1996) Campath-1H in multiple sclerosis. Multiple Sclerosis 1:357–365

    CAS  PubMed  Google Scholar 

  87. Johnson KP, Brooks BR, Cohen JA et al. (1995) Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 45:1268–1276

    Article  CAS  PubMed  Google Scholar 

  88. The IFNB Multiple Sclerosis Study Group (1993) Interferon ß-lb is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology 43:655–661

    Article  Google Scholar 

  89. Jacobs LD, Cookfair DL, Rudick RA et al. (1996) Intramuscular interferon beta-la for disease progression in relapsing multiple sclerosis. Ann Neurol 39:285–294

    Article  CAS  PubMed  Google Scholar 

  90. Matthews JR (1995) Quantification and the quest for medical certainty. Princeton University Press, New Jersey, p 195

    Google Scholar 

  91. Fisher RA (1935) The design of experiments. Oliver and Boyd, Edinburgh

    Google Scholar 

  92. Tuberculosis Trials Committee (1948) Streptomycin treatment of pulmonary tuberculosis: a medical research council investigation. Br Med J 2:769–782

    Article  Google Scholar 

  93. Kurtzke J (1955) A new scale for evaluating disability in multiple sclerosis. Neurology 5:580–583

    Article  CAS  PubMed  Google Scholar 

  94. Schumaker GA, Beebe G, Kibler RF et al. (1965) Problems of experimental trials of therapy in multiple sclerosis; report by the panel on the evaluation of experimental trials of therapy in multiple sclerosis. Ann NY Acad Sci 122:552–568

    Article  Google Scholar 

  95. Poser CM, Paty DW, Scheinberg L et al. (1983) New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol 13:227–231

    Article  CAS  PubMed  Google Scholar 

  96. Multiple Sclerosis (1983) Arch Neurol 40:683–710

    Article  Google Scholar 

  97. Weinshenker BG, Rice GPA, Noseworthy JH et al. (1991a) The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain 114:1045–1056

    Article  Google Scholar 

  98. Weinshenker BG, Rice GPA, Noseworthy JH et al. (1991b) The natural history of multiple sclerosis: a geographically based study. 4. Applications to planning and interpretation of clinical therapeutic trials. Brain 114:1057–1067

    Article  Google Scholar 

  99. Runmarker B, Andersen O (1993) Prognostic factors in multiple sclerosis incidence cohort with 25 years of follow-up. Brain 116:117–134

    Article  PubMed  Google Scholar 

  100. Miller DH, Grossman RI, Reingold SC, McFarland HF (1998) The role of magnetic resonance techniques in understand and managing multiple sclerosis. Brain 121

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mcdonald, WI. (2003). Geschichte der Entmarkungskrankheiten. In: Steck, A.J., Hartung, HP., Kieseier, B.C. (eds) Demyelinisierende Erkrankungen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57441-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57441-2_5

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63265-5

  • Online ISBN: 978-3-642-57441-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics