Skip to main content

Minimax Nonparametric Goodness-of-Fit Testing

  • Conference paper
Foundations of Statistical Inference

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 376 Accesses

Abstract

We discuss and study minimax nonparametric goodness-of-fit testing problems under Gaussian models in the sequence space and in the functional space. The unknown signal is assumed to vanish under the null-hypothesis. We consider alternatives under two-side constraints determined by Besov norms. We present the description of the types of sharp asymptotics under the sequence space model and of the rate asymptotics under the functional model. The structures of asymptotically minimax and minimax consistent test procedures are given. These results extend recent results of the paper [12]. The results for an adaptive setting are presented as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnashev, M.V. (1979). On the minimax detection of an inaccurately known signal in a Gaussian noise background. Theor. Probab. Appl. 24, 107–119

    MathSciNet  MATH  Google Scholar 

  2. Donoho, D.L. (1993). Asymptotic minimax risk for sup-norm loss: solution via optimal recovery. Probab. Theory Rel. 99, 145–170

    Article  MathSciNet  Google Scholar 

  3. Donoho, D.L., Johnstone, I.M. (1992). Minimax estimation via wavelet shrinkage. Technical Report 402, Dep. of Statistics, Stanford University.

    Google Scholar 

  4. Donoho, D.L., Johnstone, I.M., Kerkyacharian, G., Picard, D. (1995). Wavelet shrinkage: asymptopia? (with discussion). J. Roy. Stat. Soc. B 57, 301–369

    MathSciNet  MATH  Google Scholar 

  5. Härdie, W., Kerkyacharian, G., Picard, D., Tsybakov, A. (1998). Wavelets, Approximation, and Statistical Applications. LNS,129 Springer, New York

    Book  Google Scholar 

  6. Ibragimov, I.A., Khasminskii, R.Z. (1977). One problem of statistical estimation in a white Gaussian noise. Sov. Math. Dokl. 236, 333–337

    Google Scholar 

  7. Ibragimov, I.A., Khasminskii, R.Z. (1980). Asymptotic properties of some non-parametric estimates in a Gaussian white noise. In: Proc. 3rd Summer School on Probab. Theory and Math. Stat. Varna 1978, Sofia. 31–64

    Google Scholar 

  8. Ibragimov, I.A., Khasminskii, R.Z. (1980). On estimation of a probability density. Zapiski Nauchn. Seminar. LOMI. 98, 66–85

    MathSciNet  Google Scholar 

  9. Ibragimov, I.A., Khasminskii, R.Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, Berlin-New York

    MATH  Google Scholar 

  10. Ingster, Yu.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives. I, II, III. Math. Method. Stat. 2, 85–114, 171–189, 249–268

    MathSciNet  Google Scholar 

  11. Ingster, Yu.I. (1998). Adaptation in minimax non-parametric hypothesis testing. WIAS, Preprint No. 419. Berlin.

    Google Scholar 

  12. Ingster, Yu.I., Suslina, I.A. (2000). Minimax nonparametric hypothesis testing for ellipsoids and Besov bodies. ESAIM: Probab. Stat. 4, 53–135

    MathSciNet  MATH  Google Scholar 

  13. Juditsky, A. (1997). Wavelet estimators: adapting to unknown smoothness. Math. Method. Stat. 6, 1–25

    MathSciNet  MATH  Google Scholar 

  14. Korostelev, A.P. (1993). Asymptotically minimax regression estimator in uniform norm up to exact constant. Theor. Probab. Appl. 38, 737–743

    MathSciNet  Google Scholar 

  15. Lepski, O.V., Mammen, E., Spokoiny, V.G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Stat. 25, 929–947

    Article  MathSciNet  MATH  Google Scholar 

  16. Lepski, O.V., Spokoiny, V.G. (1997). Optimal pointwize adaptive methods in nonparametric estimation. Ann. Stat. 25, 2512–2546

    Article  MathSciNet  MATH  Google Scholar 

  17. Lepski, O.V., Spokoiny, V.G. (1999). Minimax nonparametric hypothesis testing: the case of an inhomogeneous alternative. Bernoulli 5, 333–358

    Article  MathSciNet  MATH  Google Scholar 

  18. Lepski, O.V., Tsybakov, A.B. (2000). Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Rel. 117, 17–48

    Article  MathSciNet  MATH  Google Scholar 

  19. Pinsker, M.S. (1980). Optimal filtration of square-integrable signals in Gaussian noise. Probi. Inf. Transm. 16, 120–133

    MATH  Google Scholar 

  20. Spokoiny, V.G. (1996). Adaptive hypothesis testing using wavelets. Ann. Stat. 24,2477–2498

    Article  MathSciNet  MATH  Google Scholar 

  21. Spokoiny, V.G. (1998). Adaptive and spatially adaptive testing of nonparametric hypothesis. Math. Method. Stat. 7, 245–273

    MathSciNet  MATH  Google Scholar 

  22. Triebel H. (1992). Theory of Functional Space 2. Birkhäuser, Basel.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ingster, Y.I., Suslina, I.A. (2003). Minimax Nonparametric Goodness-of-Fit Testing. In: Haitovsky, Y., Ritov, Y., Lerche, H.R. (eds) Foundations of Statistical Inference. Contributions to Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-642-57410-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57410-8_13

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-0047-0

  • Online ISBN: 978-3-642-57410-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics