Skip to main content

Modelle zum Wirkmechanismus der transkraniellen Magnetstimulation

  • Chapter
Elektromagnetische Therapien in der Psychiatrie
  • 85 Accesses

Zusammenfassung

Analog zu den Ausführungen zum Wirkmechanismus der Elektroschockstimulation und der Elektrokrampftherapie bedarf es auch für den Wirkmechanismus der TMS und rTMS weiterer Forschung. Der bisherige therapeutische Einsatz am Menschen gründet sich also überwiegend auf den fehlenden Nachweis schwerwiegender Nebenwirkungen oder das Fehlen wirksamer Behandlungsverfahren. Bisher wurden verschiedene physiologische und biochemische Aspekte der TMS an Patienten (George u. Belmaker 2000), an gesunden Probanden (Nahas et al. 2001) und im Tiermodell untersucht (Lisanby u. Belmaker 2000). Beim Menschen sind TMS-induzierte Veränderungen der kortikalen Durchblutung mit der PET (Strafella u. Paus 2001), der SPECT (Conca et al. 2000) und der fMRI (Nahas et al. 2001) beschrieben worden sowie EEG-Veränderungen (Paus et al. 2001b) und insbesondere Änderungen der motorisch evozierten Potenziale (MEP) im motorischen System (Maeda et al. 2000). Untersuchungen zu TMS-induzierten Veränderungen im Liquor wurden bisher nur zu Patienten mit Morbus Parkinson publiziert (Shimamoto et al. 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20:59–61

    Article  PubMed  CAS  Google Scholar 

  • APA, Weiner RD (2001) The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training and Privileging: a Task Force Report of the American Psychiatric Association, 2nd edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Ben Shachar D, Belmaker RH, Grisaru N, Klein E (1997) Transcranial magnetic stimulation induces alterations in brain monoamines. J Neural Transm 104:191–197

    Article  Google Scholar 

  • Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ (1993) Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 23:579–590

    Article  PubMed  CAS  Google Scholar 

  • Bohning DE, Shastri A, Nahas Z, Lorberbaum JP, Andersen SW, Danneis WR, Haxthausen EU, Vincent DJ, George MS (1998) Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest Radiol 33:336–340

    Article  PubMed  CAS  Google Scholar 

  • Bridgers SL (1991) The safety of transcranial magnetic stimulation reconsidered: evidence regarding cognitive and other cerebral effects. Electroencephalogr Clin Neu-rophysiol Suppl 43:170–179

    CAS  Google Scholar 

  • Brown GP, Blitzer RD, Connor JH, Wong T, Shenolikar S, Iyengar R, Landau EM (2000) Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J Neurosci 20:7880–7887

    PubMed  CAS  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1398–1403

    Google Scholar 

  • Cohrs S, Tergau F, Korn J, Becker W, Hajak G (2001) Suprathreshold repetitive transcranial magnetic stimulation elevates thyroid-stimulating hormone in healthy male subjects. J Nerv Ment Dis 189:393–397

    Article  PubMed  CAS  Google Scholar 

  • Conca A, Fritzsche H, Peschina W, König P, Swoboda E, Wiederin H, Haas C (2000) Preliminary findings of simultaneous 18F-FDG and 99mTc-HMPAO SPECT in patients with depressive disorders at rest: differential correlates with ratings of anxiety. Psychiatry Res 98:43–54

    Article  PubMed  CAS  Google Scholar 

  • Conca A, Koppi S, König P, Swoboda E, Krecke N (1996) Transcranial magnetic stimulation: a novel antidepressive strategy?. Neuropsychobiology 34:204–207

    Article  PubMed  CAS  Google Scholar 

  • Counter SA (1993) Neurobiological effects of extensive transcranial electromagnetic stimulation in an animal model. Electroencephalogr Clin Neurophysiol 89:341–348

    Article  PubMed  CAS  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    Article  PubMed  Google Scholar 

  • Duman RS, Malberg J, Nakagawa S, D’Sa C (2000) Neuronal plasticity and survival in mood disorders. Biol Psychiatry 48:732–739

    Article  PubMed  CAS  Google Scholar 

  • Eschweiler GW, Plewnia C, Bartels M (2001) Welche depressiven Patienten profitieren von präfrontaler repetitiver transkranieller Magnetstimulation (RTMS)?. Fortschr Neurol Psychiatr 69:1–8

    Article  Google Scholar 

  • Evers S, Hengst K, Pecuch PW (2001) The impact of repetitive transcranial magnetic Stimulation on pituitary hormone levels and cortisol in healthy subjects. J Affect Disord 66:83–88

    Article  PubMed  CAS  Google Scholar 

  • Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P (1997) Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport 8:2787–2791

    Article  PubMed  CAS  Google Scholar 

  • Frodl T, Meisenzahl EM, Zetzsche T, Born C, Groll C, Jager M, Leinsinger G, Bottlen-der R, Hahn K, Moller HJ (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159:1112–1118

    Article  PubMed  Google Scholar 

  • Gates JR, Dhuna A, Pascual-Leone A (1992) Lack of pathologic changes in human temporal lobes after transcranial magnetic stimulation. Epilepsia 33:504–508

    Article  PubMed  CAS  Google Scholar 

  • George MS, Belmaker R-H (2000) Transcranial Magnetic Stimulation in Neuropsychiatry. American Psychiatric Press, Washington

    Google Scholar 

  • George MS, Wassermann EM, Post RM (1996) Transcranial magnetic stimulation: a neuropsychiatric tool for the 21st century. J Neuropsychiatry Clin Neurosci 8:373–382

    PubMed  CAS  Google Scholar 

  • Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philos Trans R Soc Lond B Biol Sci 351:1445–1453

    Article  PubMed  CAS  Google Scholar 

  • Graf T, Engeler J, Achermann P, Mosimann UP, Noss R, Fisch HU, Schlaepfer TE (2001) High frequency repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral cortex: EEG topography during waking and subsequent sleep. Psychiatry Res 107:1–9

    Article  PubMed  CAS  Google Scholar 

  • Greenberg BD, Ziemann U, Cora-Locatelli G, Harmon A, Murphy DL, Keel JC, Wassermann EM (2000) Altered cortical excitability in obsessive-compulsive disorder. Neurology 54:142–147

    Article  PubMed  CAS  Google Scholar 

  • Grisaru N, Chudakov B, Yaroslavsky Y, Belmaker RH (1998) Transcranial magnetic stimulation in mania: a controlled study. Am J Psychiatry 155:1608–1610

    PubMed  CAS  Google Scholar 

  • Hansson AC, Cintra A, Belluardo N, Sommer W, Bhatnagar M, Bader M, Ganten D, Fuxe K (2000) Gluco-and mineralocorticoid receptor-mediated regulation of neurotrophic factor gene expression in the dorsal hippocampus and the neocortex of the rat. Eur J Neurosci 12:2918–2934

    Article  PubMed  CAS  Google Scholar 

  • Hausmann A, Weis C, Marksteiner J, Hinterhuber H, Humpel C (2000) Chronic repetitive transcranial magnetic stimulation enhances c-fos in the parietal cortex and hippocampus. Brain Res Mol Brain Res 76:355–362

    Article  PubMed  CAS  Google Scholar 

  • Hedges DW, Salyer DL, Higginbotham BJ, Lund TD, Hellewell JL, Ferguson D, Lephart ED (2002) Transcranial magnetic stimulation (TMS) effects on testosterone, prolactin, and corticosterone in adult male rats. Biol Psychiatry 51:417–421

    Article  PubMed  CAS  Google Scholar 

  • Hoffman RE, Cavus I (2002) Slow transcranial magnetic stimulation, long-term depotentiation, and brain hyperexcitability disorders. Am J Psychiatry 159:1093–1102

    Article  PubMed  Google Scholar 

  • Jang IS, Kang UG, Kim YS, Ahn YM, Park JB, Juhnn YS (2001) Isoform-specific changes of adenylate cyclase mRNA expression in rat brains following chronic electroconvulsive shock. Prog Neuropsychopharmacol Biol Psychiatry 25:1571–1581

    Article  PubMed  CAS  Google Scholar 

  • Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Engelmann M, Müller MB, Henniger MSH, Hermann B, Rupprecht R, Neumann ID, Toschi N, Landgraf R, Post A (2000) Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. J Psychiatr Res 34:265–276

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M (2000) Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci 12:3713–3720

    Article  PubMed  CAS  Google Scholar 

  • Keck ME, Welt T, Post A, Muller MB, Toschi N, Wigger A, Landgraf R, Holsboer F, Engelmann M (2001) Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects. Neuropsychopharmacology 24:337–349

    Article  PubMed  CAS  Google Scholar 

  • Komssi S, Aronen HJ, Huttunen J, Kesaniemi M, Soinne L, Nikouline VV, Ollikainen M, Roine RO, Karhu J, Savolainen S, Ilmoniemi RJ (2002) Ipsi-and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184

    Article  PubMed  Google Scholar 

  • Kritzer MF, Goldman-Rakic PS (1995) Intrinsic circuit organization of the major layers and sublayers of the dorsolateral prefrontal cortex in the rhesus monkey. J Comp Neurol 359:131–143

    Article  PubMed  CAS  Google Scholar 

  • Lisanby SH, Belmaker RH (2000) Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (RTMS): comparisons with electroconvulsive shock (ECS). Depress Anxiety 12:178–187

    Article  PubMed  CAS  Google Scholar 

  • Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–15227

    Article  PubMed  CAS  Google Scholar 

  • Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ (2000) Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics 21:272–286

    Article  PubMed  CAS  Google Scholar 

  • Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of cor-ticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805

    Article  PubMed  CAS  Google Scholar 

  • Matsumiya Y, Yamamoto T, Yarita M, Miyauchi S, Kling JW (1992) Physical and physiological specification of magnetic pulse stimuli that produce cortical damage in rats. J Clin Neurophysiol 9:278–287

    Article  PubMed  CAS  Google Scholar 

  • Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Silva JA, Tekell JL, Martin CC, Lancaster JL, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682

    PubMed  CAS  Google Scholar 

  • McCann UD, Kimbrell TA, Morgan CM, Anderson T, Geraci M, Benson BE, Wassermann EM, Willis MW, Post RM (1998) Repetitive transcranial magnetic stimulation for posttraumatic stress disorder [letter]. Arch Gen Psychiatry 55:276–279

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proc Natl Acad Sci USA 99:10948–10953

    Article  PubMed  CAS  Google Scholar 

  • Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A (2000) Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett 284:121–125

    Article  PubMed  CAS  Google Scholar 

  • Müller MB, Toschi N, Kresse AE, Post A, Keck ME (2000) Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23:205–215

    Article  PubMed  Google Scholar 

  • Nahas Z, Lomarev M, Roberts DR, Shastri A, Lorberbaum JP, Teneback C, McConnell K, Vincent DJ, Li X, George MS, Bohning DE (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720

    Article  PubMed  CAS  Google Scholar 

  • Nahas Z, Teneback CC, Kozel A, Speer AM, deBrux C, Molloy M, Stallings L, Spicer KM, Arana G, Bohning DE, Risch SC, George MS (2001) Brain effects of TMS delivered over prefrontal cortex in depressed adults: Role of stimulation frequency and coil-cortex distance. J Neuropsychiatry Clin Neurosci 13:459–470

    Article  PubMed  CAS  Google Scholar 

  • Nibuya M, Takahashi M, Russell DS, Duman RS (1999) Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Lett 267:81–84

    Article  PubMed  CAS  Google Scholar 

  • Niehaus L, Guldin B, Meyer B (2001) Influence of transcranial magnetic Stimulation on pupil size. J Neurol Sci 182:123–128

    Article  PubMed  CAS  Google Scholar 

  • Niehaus L, Meyer BU, Roricht S (1998) Magnetic stimulation over different brain regions: no differential effects on the elicited sympathetic skin responses. Electroencephalogr Clin Neurophysiol 109:94–99

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Houser CM, Reese K, Shotland LI, Grafman J, Sato S, Valls Sole J, Brasil Neto JP, Wassermann EM, Cohen LG (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Vails Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847–858

    Article  PubMed  Google Scholar 

  • Patterson SL, Grover LM, Schwartzkroin PA, Bothwell M (1992) Neurotrophin expression in rat hippocampal slices: a stimulus paradigm inducing LTP in CA1 evokes increases in BDNF and NT-3 mRNAs. Neuron 9:1081–1088

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Castro-Alamancos MA, Petrides M (2001a) Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci 14:1405–1411

    Article  PubMed  CAS  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001b) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    PubMed  CAS  Google Scholar 

  • Peinemann A, Lehner C, Mentschel C, Munchau A, Conrad B, Siebner HR (2000) Subthreshold 5-Hz repetitive transcranial magnetic stimulation of the human primary motor cortex reduces intracortical paired-pulse inhibition. Neurosci Lett 296:21–24

    Article  PubMed  CAS  Google Scholar 

  • Post A, Keck ME (2001) Transcranial magnetic stimulation as a therapeutic tool in psychiatry: what do we know about the neurobiological mechanisms?. J Psychiatr Res 35:193–215

    Article  PubMed  CAS  Google Scholar 

  • Post A, Müller MB, Engelmann M, Keck ME (1999) Repetitive transcranial magnetic stimulation in rats: evidence for a neuroprotective effect in vitro and in vivo. Eur J Neurosci 11:3247–3254

    Article  PubMed  CAS  Google Scholar 

  • Pridmore SA (1999) Rapid transcranial magnetic stimulation and normalization of the dexamethasone suppression test. Psychiatry Clin Neurosci 53:33–37

    Article  PubMed  CAS  Google Scholar 

  • Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. Cereb Cortex 5:323–337

    Article  PubMed  CAS  Google Scholar 

  • Schimmelpfeng J, Stein JC, Dertinger H (1995) Action of 50 Hz magnetic fields on cyclic AMP and intercellular communication in monolayers and spheroids of mammalian cells. Bioelectromagnetics 16:381–386

    Article  PubMed  CAS  Google Scholar 

  • Schutter DJ, van Honk J, d’Alfonso AA, Postma A, de Haan EH (2001) Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport 12:445–447

    Article  PubMed  CAS  Google Scholar 

  • Sgro JA, Ghatak NR, Stanton PC, Emerson RG, Blair R (1991) Repetitive high magnetic field stimulation: the effect upon rat brain. Electroencephalogr Clin Neurophysiol Suppl 43:180–185

    PubMed  CAS  Google Scholar 

  • Shelton RC, Mainer DH, Sulser F (1996) cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 153:1037–1042

    PubMed  CAS  Google Scholar 

  • Shimamoto H, Takasaki K, Shigemori M, Imaizumi T, Ayabe M, Shoji H (2001) Therapeutic effect and mechanism of repetitive transcranial magnetic stimulation in Parkinson’s disease. J Neurol 248 Suppl 3:11148–11152

    Google Scholar 

  • Siebner HR, Peller M, Willoch F, Auer C, Bartenstein P, Drzezga A, Schwaiger M, Conrad B (1999) Imaging functional activation of the auditory cortex during focal repetitive transcranial magnetic stimulation of the primary motor cortex in normal subjects. Neurosci Lett 270:37–40

    Article  PubMed  CAS  Google Scholar 

  • Sommer M, Tergau F, Wischer S, Paulus W (2001) Paired-pulse repetitive transcranial magnetic stimulation of the human motor cortex. Exp Brain Res 139:465–472

    Article  PubMed  CAS  Google Scholar 

  • Speer AM, Kimbrell TA, Wassermann EM, Repella J, Willis MW, Herscovitch P, Post RM (2000) Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry 48:1133–1141

    Article  PubMed  CAS  Google Scholar 

  • Sperling W, Martus P, Alschbach M (2000) Evaluation of neuronal effects of electroconvulsive therapy by magnetoencephalography (MEG). Prog Neuropsychopharmacol Biol Psychiatry 24:1339–1354

    Article  PubMed  CAS  Google Scholar 

  • Staubli U, Scafidi J (1999) Time-dependent reversal of long-term potentiation in area CA1 of the freely moving rat induced by theta pulse stimulation. J Neurosci 19:8712–8719

    PubMed  CAS  Google Scholar 

  • Staubli U, Scafidi J, Chun D (1999) GABAB receptor antagonism: facilitatory effects on memory parallel those on LTP induced by TBS but not HFS. J Neurosci 19:4609–4615

    PubMed  CAS  Google Scholar 

  • Strafella AP, Paus T (2001) Cerebral blood-flow changes induced by paired-pulse transcranial magnetic stimulation of the primary motor cortex. J Neurophysiol 85:2624–2629

    PubMed  CAS  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21:RC157

    PubMed  CAS  Google Scholar 

  • Szuba MP, O’Reardon JP, Evans DL (2000) Physiological effects of electroconvulsive therapy and transcranial magnetic stimulation in major depression. Depress Anxiety 12:170–177

    Article  PubMed  CAS  Google Scholar 

  • Szuba MP, O’Reardon JP, Rai AS, Snyder-Kastenberg J, Amsterdam JD, Gettes DR, Wassermann EM, Evans DL (2001) Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression. Biol Psychiatry 50:22–27

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Duman RS, Henn FA (2002) Molekulare Aspekte antidepressiver Therapie. Transsynaptische Effekte auf Signaltransduktion, Genexpression und neuronale Plastizität. Nervenarzt 73:595–599

    Article  PubMed  CAS  Google Scholar 

  • Thumm S, Loschinger M, Glock S, Hammerle H, Rodemann HP (1999) Induction of cAMP-dependent protein kinase A activity in human skin fibroblasts and rat osteo-blasts by extremely low-frequency electromagnetic fields. Radiat Environ Biophys 38:195–199

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang X, Scheich H (1996) LTD and LTP induced by transcranial magnetic stimulation in auditory cortex. Neuroreport 7:521–525

    Article  PubMed  CAS  Google Scholar 

  • Wassermann EM, Wedegaertner FR, Ziemann U, George MS, Chen R (1998) Crossed reduction of human motor cortex excitability by 1-Hz transcranial magnetic stimulation. Neurosci Lett 250:141–144

    Article  PubMed  CAS  Google Scholar 

  • Wu T, Sommer M, Tergau F, Paulus W (2000) Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects. Neurosci Lett 287:37–40

    Article  PubMed  CAS  Google Scholar 

  • Yoshida T, Yoshino A, Kobayashi Y, Inoue M, Kamakura K, Nomura S (2001) Effects of slow repetitive transcranial magnetic stimulation on heart rate variability according to power spectrum analysis. J Neurol Sci 184:77–80

    Article  PubMed  CAS  Google Scholar 

  • Zyss T, Witkowska B (1996) [Transcranial magnetic stimulation neurophysiological and biochemical response in man] Ocena neurofizjologiczna i biochemiczna mozgowia poddawanego przezczaszkowej stymulacji magnetycznej. Neurol Neurochir Pol 30:399–408

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eschweiler, G.W. (2003). Modelle zum Wirkmechanismus der transkraniellen Magnetstimulation. In: Eschweiler, G.W., Wild, B., Bartels, M. (eds) Elektromagnetische Therapien in der Psychiatrie. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57370-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57370-5_23

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-642-63248-8

  • Online ISBN: 978-3-642-57370-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics