Skip to main content

Flüssigkeitstherapie beim akuten Lungenversagen

  • Chapter
  • 21 Accesses

Zusammenfassung

In der Frühphase des akuten Lungenversagens verursachen inflammatorische Mediatoren eine Permeabilitätsstörung an der alveolo-kapillären Membran. In der Folge entsteht ein nicht-kardiales Lungenödem. Die alveolo-kapilläre Membran wird für Makromoleküle permeabel und der mikrovaskuläre Druck wird entscheidend für das Ausmaß der transvaskulären Flüssigkeitsfiltration. Determinanten des mikrovaskulären Druckes sind der linksatriale Druck, der postkapilläre Lungengefäßwiderstand und das Herzzeitvolumen. Die transvaskuläre Flüssigkeitsfil tration kann durch Negativbilanz nur dann effektiv verringert werden, wenn das Herzzeitvolumen sinkt. Die Abnahme des Herzzeitvolumens birgt die Gefahr der Splanchnikusischämie mit bakterieller Translokation und des akuten Nierenversagens. Deshalb darf eine Negativbilanz nur dann erfolgen, wenn der Kreislauf stabil ist und wenn eine Hypovolämie vermieden wird. Beim Volumenersatz scheinen kristalloide Lösungen Vorteile gegenüber kolloidalen Lösungen zu haben.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349

    Article  PubMed  CAS  Google Scholar 

  2. 2. Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 31:121–140

    Article  Google Scholar 

  3. 3. Calandrino FS, Anderson DJ, Mintun MA, Schuster DP (1988) Pulmonary vascular permeability during the adult respiratory distress syndrome: a positron emission tomographic study. Am Rev Respir Dis 1238:421–428

    Google Scholar 

  4. 4. Kaplan JD, Calandrino FS, Schuster DP (1991) A positron emission tomographic comparison of pulmonary vascular permeability during the adult respiratory distress syndrome and pneumonia. Am Rev Respir Dis 143:150–154

    PubMed  CAS  Google Scholar 

  5. 5. Roselli RJ, Riddle WR (1989) Analysis of noninvasive macromolecular transport measurements in the lung. J Appl Physiol 67:2343–2350

    PubMed  CAS  Google Scholar 

  6. 6. Bradley JD, Roselli RJ, Parker RE, Harris TR (1988) Effects of endotoxe-mia on the sheep lung microvascular membrane: a two-pore theory. J Appl Physiol 64:2675–2683

    PubMed  CAS  Google Scholar 

  7. 7. Conhaim RL, Eaton A, Staub NC, Heath TD (1988) Equivalent pore estimate for the alveolar-airway barrier in isolated dog lung. J Appl Physiol 64:1134–1142

    PubMed  CAS  Google Scholar 

  8. 8. Lamm WJE, Luchtel D, Albert RK (1988) Sites of leakage in three models of acute lung injury. J Appl Physiol 64:1079–1083

    PubMed  CAS  Google Scholar 

  9. 9. Khimenko PL, Taylor AE (1999) Segmental microvascular permeability in ischemia-reperfusion injury in rat lung. Am J Physiol 276:L958–L960

    PubMed  CAS  Google Scholar 

  10. 10. Taylor AE, Gaar KA (1970) Estimation of equivalent pore radii of pulmonary capillary and alveolar membrane. Am J Physiol 218:1133–1140

    PubMed  CAS  Google Scholar 

  11. 11. Perl WP, Chowdhury P, Chinard FP (1975) Reflection coefficients of dog lung entothelium to smal hydrophilic solutes. Am J Physiol 228:797–809

    PubMed  CAS  Google Scholar 

  12. 12. Parker JC, Parker RE, Granger DN, Taylor AE (1981) Vascular permeability and transvascular fluid and protein transport in the dog lung. Cir Res 48:545–561

    Article  Google Scholar 

  13. 13. Isago T, Traber LD, Herndorn DN, Abdi S, Fujioka K, Traber DL (1990) Determination of pulmonary microvascular reflection coefficient in sheep by venous occlusion. J Appl Physiol 69:2311–2316

    PubMed  CAS  Google Scholar 

  14. 14. Guyton AC, Granger HJ, Taylor AE (1971) Interstitial fluid pressure. Physiol Rev 51:5227–5563

    Google Scholar 

  15. 15. Taylor AE, Barnard JW, Barman SA, Adkins WK (1991) Fluid balance. In: Crystal RG, West JB (Hrsg) The lung. Scientific foundations. Raven Press, New York, S 1147–1161

    Google Scholar 

  16. 16. Drake R, Giesler M, Laine G, Gabel J, Hansen T (1985) Effect of outflow pressure on lung lymph flow in unanesthetized sheep. J Appl Physiol 58: 70–76

    PubMed  CAS  Google Scholar 

  17. 17. Parker JC, Taylor AE (1982) Comparison of capsular and intra-alveolar fluid pressures in the lung. J Appl Physiol 52:1444–1452

    PubMed  CAS  Google Scholar 

  18. 18. Miserocchi G, Negrini D, Del Fabro M, Venturoli D (1993) Pulmonary interstitial pressure in intact in situ lung: transition to interstitial edema. J Appl Physiol 74:1171–1177

    PubMed  CAS  Google Scholar 

  19. 19. Negrini D, Passi A, De Luca G, Miserocchi G (1998) Involvment of lung interstitial proteoglycans in development of hydraulic-and elastase-in-duced edema. Am J Physiol 274: L203–211

    Google Scholar 

  20. 20. Erdmann AJ, Vaughan TR, Brigham KL, Woolverton WC, Staub NC (1975) Effect of increased vascular pressure on lung fluid balance in unanes-tethized sheep. Circ Res 37:271–284

    Article  PubMed  Google Scholar 

  21. 21. Brigham KL, Kariman K, Harris TR, Snapper JR, Bernard GR, Young SL (1983) Correlation of oxygenation with vascular permeability-surface area but not with lung water in humans with acute respiratory failure and pulmonary edema. J Clin Invest 72:339–349

    Article  PubMed  CAS  Google Scholar 

  22. 22. Gaar KA, Taylor AE, Owens JE, Guyton AC (1967) Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am J Physiol 213:910–914

    PubMed  Google Scholar 

  23. 23. Levy MM (1996) Pulmonary capillary pressure and tissue perfusion: Clinical implications during resuscitation from Shock. New Horizons 4:504–518

    PubMed  CAS  Google Scholar 

  24. 24. Horgan MJ, Palace GP, Everitt JE, Malik AB (1993) TNF-α release in en-dotxemia contributes to neutrophil-dependent pulmonary edema. Am J Physiol 264:H1161-H1165

    Google Scholar 

  25. 25. Shibamoto T, Yamaguchi Y, Hayashi T, Saeki Y, Kawamoto M, Koyama S (1993) PAF inncreases capillary pressure but not vascular permeability in isolated blood-perfused canine lungs. Am J Physiol 264:H1454–H1459

    PubMed  CAS  Google Scholar 

  26. 26. Yoshimura K, Tod ML, Pier KG, Rubin LJ (1989) Role of venoconstric-tion in thromboxane-induced pulmonary hypertension and edema in lambs. J Appl Physiol 66:929–935

    PubMed  CAS  Google Scholar 

  27. 27. Yoshimura K, Tod ML, Pier KG, Rubin LJ (1989) Effects of a thromboxane A2 analogue and prostacyclin on lung fluid balance in newborn lambs. Circ Res 65:1409–1416

    Article  PubMed  CAS  Google Scholar 

  28. 28. Parker RE, Brigham KL (1987) Effects of endotoxemia on pulmonary vascular resistances in unanesthetized sheep. J Appl Physiol 63:1058–1062

    PubMed  CAS  Google Scholar 

  29. 29. Treboul JL, Andrivet P, Ansquer M, Besbes M, Rekik N, Lemaire F, Brun-Buisson C (1992) Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiology 72: 998–1003

    Google Scholar 

  30. 30. Noonan TC, Selig WM, Kern DF, Malik SB (1986) Mechanism of pepti-doleukotriene-induced increases in pulmonary transvascular fluid filtration. J Appl Physiol 61:1928–1934

    PubMed  CAS  Google Scholar 

  31. 31. Benzing A, Bräutigam P, Geiger K, Loop T, Beyer U, Moser E (1995) Inhaled nitric oxide reduces transvascular albumin flux in patients with acute lung injury. Anesthesiology 83:1153–1161

    Article  PubMed  CAS  Google Scholar 

  32. 32. Benzing A, Mols G, Guttmann J, Kaltofen H, Geiger K (1998) Effect of different doses of inhaled nitric oxide on pulmonary capillary pressure and on longitudinal distribution of pulmonary vascular resistance in ARDS. Br J Anaesth 80:440–446

    Article  PubMed  CAS  Google Scholar 

  33. 33. West JB, Tsukimoto K, Mathieu-Cost-ello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742

    PubMed  CAS  Google Scholar 

  34. 34. Maron MB, Fu Z, Mathieu-Costello O, West JB (2001) Effect of high transca-pillary pressures on capillary ultra-structure and permeability coefficients in dog lung. J Appl Physiol90:638–648

    PubMed  CAS  Google Scholar 

  35. 35. Ehrhart IC, Orfanos SE, McCloud LL, Sickles DW, Hofmann WF, Catravas JD (1999) Vascular recruitment increases evidence of lung injury. Crit Care Med 27:120–129

    Article  PubMed  CAS  Google Scholar 

  36. 36. Ehrhart IC, McCloud LL, Orfanos SE, Catravas JD, Hofman WF (1994) Effect of high blood flow on pulmonary vascular permeability to protein. J Appl Physiol 76:2342–2347

    PubMed  CAS  Google Scholar 

  37. 37. Overholser KA, Lomangino NA, Parker RE, Pou NA, Harris TR (1994) Pulmonary vascular resistance distribution and recruitment of microvascular surface area. J Appl Physiol 77:845–855

    PubMed  CAS  Google Scholar 

  38. 38. Czartolomna J, Voelkel NF, Chang SW (1991) Permeability characteristics of isolated perfused rat lungs. J Appl Physiol 70:1854–1860

    PubMed  CAS  Google Scholar 

  39. 39. Presson RG, Hanger CC, Godbey PS, Graham JA, Lloyd TC, Wagner WW (1994) Effect of increasing flow on distribution of pulmonary capillary transit times. J Appl Physiol 76:1701–1711

    Article  PubMed  Google Scholar 

  40. 40. Toivonen HJ, Catravas JD (1991) Effects of blood flow on lung ACE kinetics: evidence for microvascular recruitment. J Appl Physiol 71:2244–2254

    PubMed  CAS  Google Scholar 

  41. 41. Shibamoto T, Parker JC, Taylor AE, Townsley MI (1990) Derecruitment of filtration surface area in paraquat-injured isolated dog lungs. J Appl Physiol 68:1581–1589

    PubMed  CAS  Google Scholar 

  42. 42. Yipintsoi T (1976) Single-passage extraction and permeability estimation of sodium in normal dog lungs. Circulation 39:523–531

    Article  CAS  Google Scholar 

  43. 43. Anglade D, Corboz M, Menaouar A, Parker JC, Sanou S, Bayat S, Benchetrit G, Grimbert FA (1998) Blood flow vs. pressure effects on filtration coefficient in oleic acid injured lung. J Appl Physiol 84:1011–1023

    PubMed  CAS  Google Scholar 

  44. 44. Permutt S, Riley RL (1963) Hemodynamics of collapsible vessels with tone: the vascular waterfall. J Appl Physiol 18:924–932

    PubMed  CAS  Google Scholar 

  45. 45. Leeman M, Lejeune P, Closset J, Vachiery JL, Melot C, Naeije R (1990) Nature of pulmonary hypertension in canine oleic acid edema. J Appl Physiol 69:293–298

    PubMed  CAS  Google Scholar 

  46. 46. Guidot DM, Repine MJ, Hybertson BM, Repine JE (1995) Inhaled nitric oxide prevents neutrophil-mediated, oxygen radical-dependent leak in isolated rat lungs. Am J Physiol 269:L2-L5

    Google Scholar 

  47. 47. Fullerton DA, Eisenach JH, McIntyre RC, Friese RS, Sheridan BC, Roe GB, Agrafo J, Banerjee A, Harken AH (1996) Inhaled nitric oxide prevents pulmonary endothelial dysfunction after mesenteric ishemia-reperfusion. Am J Physiol 271:L326–L331

    PubMed  CAS  Google Scholar 

  48. 48. Waypa GB, Morton CA, Vincent PA, Mahoney JR, Johnston WK, Minnear FL (2000) Oxidant-increased endothelial permeability: prevention with phosphodiesterase inhibition vs cAMP production. J Appl Physiol 88: 835–842

    PubMed  CAS  Google Scholar 

  49. 49. Bhattacharya J (2000) Gene therapy for pulmonary edema. Am J Respir Cell Mol Biol 22:640–641

    PubMed  CAS  Google Scholar 

  50. 50. Kaner RJ, Ladetto JV, Singh R, Fuku-da N, Mathay MA, Crystal RG (2000) Lung overexpression of the vascular endothelial growth factor gene induces pulmonary edema. Am J Respir Cell Mol Biol 22:657–664

    PubMed  CAS  Google Scholar 

  51. 51. Parker JC, Ivey CL (1997) Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 53:1962–1967

    Google Scholar 

  52. 52. Drake RE, Giesler M, Laine G, Gabel J, Hansen T (1985) Effect of outflow pressure on lung lymph flow in una-nesthezied sheep. J Appl Physiol 58:70–76

    PubMed  CAS  Google Scholar 

  53. 53. Szabo G, Magyar Z (1967) Effect of increased systemic venous pressure on lymph pressure and flow. Am J Physiol 212:1469–1474

    PubMed  CAS  Google Scholar 

  54. 54. Sivak ED, Tita J, Meden G, Ishigami M, Graves J, Kavlich J, Stowe NT, Magnusson MO (1986) Effects of furosemide versus isolated ultrafiltration on extravascular lung water in oleic-acid induced pulmonary edema. Crit Care Med 14:48–51

    Article  PubMed  CAS  Google Scholar 

  55. 55. Ali J, Wood LDH (1984) Pulmonary vascular effects of furosemide on gas exchange in pulmonary edema. J Appl Physiol 57:160–167

    PubMed  CAS  Google Scholar 

  56. 56. Rusch VW, Artmann L, Cheney FW (1986) Effect of furosemide on fully established low pressure pulmonary edema. J Surg Res 41:141–145

    Article  PubMed  CAS  Google Scholar 

  57. 57. Long R, Breen PH, Mayers I, Wood LDH (1988) Treatment of canine aspiration pneumonitis: fluid volume reduction vs fluid volume expansion. J Appl Physiol 65:1736–1744

    PubMed  CAS  Google Scholar 

  58. 58. Campbell AR, Folkesson HG, Berthiaume Y, Gutkowska J, Suzuki S, Matthay MA (1999) Alveolar epithelial fluid clearance persists in the presence of moderate left atrial hypertension. J Appl Physiol 86:139–151

    PubMed  CAS  Google Scholar 

  59. 59. Dantzker DR, Lynch JP, Weg JG (1980) Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77:636–642

    Article  PubMed  CAS  Google Scholar 

  60. 60. Humphrey H, Hall J, Sznajder I, Silverstein M, Wood L (1990) Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 97:1176–1180

    Article  PubMed  CAS  Google Scholar 

  61. 61. Mitchell JP, Schuller D, Calandrino FS, Schuster DP (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    Article  PubMed  CAS  Google Scholar 

  62. 62. Lush CW, Kvietys PR (2000) Microvascular dysfunction in sepsis. Microcirculation 7:83–101

    PubMed  CAS  Google Scholar 

  63. 63. Maier RV, Bulger EM (1996) Endothelial changes after shock and injury. New Horizons 4:211–223

    PubMed  CAS  Google Scholar 

  64. 64. Zadrobilek E, Hackl W, Sporn P, Steinbereithner K (1989) Effect of large volume replacement with balanced electrolyte solutions on extra-vascular lung water in surgical patients with sepsis syndrome. Intensive Care Med 15:505–510

    Article  PubMed  CAS  Google Scholar 

  65. 65. Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A (1994) The effects of norepinephrine on hemodynamics and renal function in severe septic shock states. Intensive Care Med 19:151–154

    Article  Google Scholar 

  66. 66. Baker JW, Deitch EA, Li M, Berg RD, Specian RD (1988) Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28:896–906

    Article  PubMed  CAS  Google Scholar 

  67. 67. Deitch DA, Morrison J, Berg R, Specian RD (1990) Effect of hemorrhagic shock on bacterial translocation, intestinal morphology, and intestinal permeability in conventional and antibiotic-decontaminated rats. Crit Care Med 18:529–536

    Article  PubMed  CAS  Google Scholar 

  68. 68. Yao YM, Bahrami S, Leichtfried G, Redl H, Schlag G (1995) Pathogenesis of hemorrhage-induced bacteria/en-dotoxin translocation in rats. Effects of recombinant bactericidal/permeability-increasing protein. Ann Surg 221:398–405

    Article  PubMed  CAS  Google Scholar 

  69. 69. Takala J (1996) Determinants of splanchnic blood flow. Br J Anaesth 77:50–58

    Article  PubMed  CAS  Google Scholar 

  70. 70. Edouard AR, Degremont AC, Duran-teau J, Pussard E, Berdeaux A, Samii K (1994) Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20:414–420

    Article  PubMed  CAS  Google Scholar 

  71. 71. Thangathurai D, Charbonnet C, Wo CCJ, Shoemaker WC, Mikhail MS, Roffey P, Roessler P, Kuchta K, Zel-man V, DeMeester TR, Katz R (1996) Intraoperative maintainance of tissue perfusion prevents ARDS. New Horizons 4:466–474

    PubMed  CAS  Google Scholar 

  72. 72. Liano F, Pascual J (1996) Epidemiology of acute renal failure: a prospective, multicenter, community-based study. Madrid acute renal failure study group. Kidney Int 50:811–818

    Article  PubMed  CAS  Google Scholar 

  73. 73. De Mendoça A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli A, Takala J, Sprung C, Cantraine F (2000) Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA Score. Intensive Care Med 26:915–921

    Article  Google Scholar 

  74. 74. Guerin C, Girard R, Selli JM, Perdrix JP, Ayzac L (2000) Initial versus delayed acute renal failure in the intensive care unit. Am J Resp Crit Care Med 161:872–879

    PubMed  CAS  Google Scholar 

  75. 75. Mangano CM, Diamondstone LS, Ramsay JG, Aggarwal A, Herskowitz A, Mangano DT (2000) Renal dysfunction after myocardial revascularisation: risk factors, adverse outcomes, and hospital resource utilisation. Ann Int Med 128:194–203

    Google Scholar 

  76. 76. Levy EM, Viscoli CM, Horwitz RI (1996) The effect of acute renal failure on mortality. A cohort analysis. JAMA 275:1489–1494

    Article  PubMed  CAS  Google Scholar 

  77. 77. Slutsky RA (1983) Reduction in pulmonary blood volume during positive end-expiratory pressure. J Surg Res 35:181–187

    Article  PubMed  CAS  Google Scholar 

  78. 78. Ramamoorthy C, Rooney MW, Dries DJ, Mathru M (1992) Aggressive hydration during continuous positive-pressure ventilation restores atrial transmural pressure, plasma atrial natriuretic peptide concentration, and renal function. Crit Care Med 20:1014–1019

    Article  PubMed  CAS  Google Scholar 

  79. 79. Gotoh N, Kambara K, Jiang XW, Ohno M, Emura S, Fujiwara T, Fuji-wara H (2000) Apoptosis in microvascular endothelial cells of perfused rabbit lungs with acute hydrostatic edema. J Appl Physiol 88:518–526

    PubMed  CAS  Google Scholar 

  80. 80. Bachofen H, Schürch S, Michel RP, Weibel ER (1993) Experimental hydrostatic pulmonary edema in rabbit lungs. Am Rev Respir Dis 147:989–996

    PubMed  CAS  Google Scholar 

  81. 81. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) The American and European Consensus Conference on ARDS. Definitions, mechnisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  82. 82. Cochrane Injuries Group Albumin Reviewers (1998) Human albumin administration in critically ill patients: systematic review of randomized controlled clinical trials. BMJ 317:235–240

    Article  Google Scholar 

  83. 83. Tanaka H, Dahms TE, Bell E, Naun-heim KS, Baudenstiel LJ (1993) Effect of hydroxyethyl starch on alveolar flooding in acute lung injury in dogs. Am Rev Respir Dis 148:852–859

    Article  PubMed  CAS  Google Scholar 

  84. 84. Pearl RG, Halperin BD, Mihm FG, Rosenthal MH (1988) Pulmonary effects of crystalloid and colloid resuscitation from hemorrhagic shock in the presence of oleic acid-induced pulmonary capillary injury in the dog. Anesthesiology 68:12–20

    Article  PubMed  CAS  Google Scholar 

  85. 85. Arakawa M, Jerome EH, Enzan K, Grady M, Staub NC (1990) Effects of dextran 70 on hemodynamics and lung liquid and protein exchange in awake sheep. Circ Res 67:852–861

    Article  PubMed  CAS  Google Scholar 

  86. 86. Korent VA, Conhaim RL, McGrath AM, DeAngelis DA, Harms BA (1997) Molecular distribution of hetastarch in plasma and lung lymph of una-nesthetized sheep. Am J Resp Crit Care Med 153:1302–1308

    Google Scholar 

  87. 87. Staub NC (1974) Pulmonary edema. Physiol Rev 54:678–811

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Benzing, A., Mols, G., Geiger, K. (2003). Flüssigkeitstherapie beim akuten Lungenversagen. In: Die Intensivtherapie bei akutem Lungenversagen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57349-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57349-1_8

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1395-2

  • Online ISBN: 978-3-642-57349-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics