Skip to main content

Inhalative Vasodilatatoren beim akuten Lungenversagen

  • Chapter
Die Intensivtherapie bei akutem Lungenversagen
  • 19 Accesses

Zusammenfassung

Die Therapie des akuten Lungenversagens (Acute Respiratory Distress Syndrome, ARDS) mit inhalativ verabreichten Vasodilatatoren ist seit etwa 10 Jahren Gegenstand intensiver Forschungsarbeit. Die Entdeckung der zentralen Bedeutung von Stickstoffmonoxid (NO) als physiologisch wirksamem Vasodilatator führte zu dem Versuch, inhaliertes NO und andere kurzwirksame Vasodilatatoren therapeutisch nutzbar zu machen, um beim ARDS eine Reduktion des pulmonalarteriellen Druckes und eine Verbesserung der Ventilations-Perfusionsverhältnisse zu erzielen. Zahlreiche tierexperimentelle und klinische Studien konnten nachweisen, dass die Inhalation von NO zu einer selektiven pulmonalarteriellen Vasodilatation und damit zu einer Reduktion des pulmonalarteriellen Druckes und einer Verbesserung des Gasaustausches durch Blutflussumverteilung zu Gunsten ventilierter Lungenareale führen kann. Die hohen Erwartungen, die mit diesen ersten Ergebnissen verknüpft waren, wurden jedoch bald gedämpft: Zunächst zeigte sich für die NO-Inhalation, dass nur bei einem Teil der ARDS-Patienten die erwünschten Effekte auftraten, während bei anderen ‚Non-Respondern ‘keine Verbesserung von Gasaustausch oder Hämodynamik nachzuweisen war. Weiterhin wurde nach Absetzten der Therapie ein Rebound-Phänomen beobachtet, in dessen Verlauf sich ein bedrohlicher Anstieg des pulmonalarteriellen Druckes entwickeln kann. Entscheidend für den heutigen Stellenwert der NO-Inhalation beim ARDS sind jedoch die Ergebnisse randomisierter Multicenterstudien, die ebenfalls nur für einen Teil der Patienten eine kurzfristige Verbesserung von Gasaustausch und Hämodynamik nachweisen konnten, während die Mortalität dieser Patienten im Vergleich zum Kontrollkollektiv nicht gesenkt werden konnte.

Inhalative Vasodilatatoren wie Prostacyclin oder andere Prostaglandine zeichnen sich durch eine vergleichbare Wirkung auf Hämodynamik und Gasaustausch bei günstigerem Nebenwirkungsprofil aus. Ergebnisse randomisierter Multicenterstudien, die langfristige positive Effekte der Prostaglandin-Inhalation beim ARDS nachweisen könnten, liegen allerdings bis heute nicht vor.

Die Inhalation von Vasodilatatoren beim ARDS muss deshalb sehr differenziert bewertet werden: So erscheint der Einsatz als Rescue- bzw. Bridging-Therapie im Einzelfall sinnvoll. Für die Kombination mit anderen Therapieverfahren wie der intravenösen Applikation von Almitrine, der Anwendung von PEEP oder der Gabe von Phosphodiesterase-Hemmern zur Verbesserung der Wirkung liegen hingegen bis heute zu wenig Daten vor. Zusammenfassend bleibt die Inhalation von Vasodilatatoren beim ARDS ein experimentelles Therapieverfahren, das einer strengen Indikationsstellung bedarf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1. Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L, Lamy M, LeGall JR, Morris A, Spragg R (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Re-spir Crit Care Med 149:818–824

    PubMed  CAS  Google Scholar 

  2. 2. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG (1979) Ventilationperfusion distributions in the adult respiratory distress syndrome. American Review of Respiratory Disease 120:1039–1052

    PubMed  CAS  Google Scholar 

  3. 3. Putensen C (2000) Acute lung injury. In: Roca J, Rodriguez-Roisin R, Wagner PD (eds) Pulmonary and peripheral gas exchange in health and disease. Marcel Decker, New York, S 303–329

    Google Scholar 

  4. 4. Montgomery AB, Stager M, Carrico CJ, Hudson LD (1985) Causes of mortality in patients with the adult respiratory distress syndrome. American Review of Respiratory Disease 132:485–489

    PubMed  CAS  Google Scholar 

  5. 5. American Thoracic Society T (1999) International consensus conferences in intensive care medicine: Ventilator-associated Lung Injury in ARDS. Am J Respir Crit Care Med 160:2118–2124

    Google Scholar 

  6. 6. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3′: 5′-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Article  PubMed  CAS  Google Scholar 

  7. 7. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  8. 8. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84:9265–9369

    Article  PubMed  CAS  Google Scholar 

  9. 9. Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-argi-nine. Nature 333:664–666

    Article  PubMed  CAS  Google Scholar 

  10. 10. Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  11. 11. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci USA 87:10043–10047

    Article  PubMed  CAS  Google Scholar 

  12. 12. Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  13. 13. Glasson WA, Tuesday CS (1963) The atmospheric thermal oxidation of nitric oxide. J Am Chem Soc 85:2901–2906

    Article  CAS  Google Scholar 

  14. 14. Evans MJ, Stephens RJ, Cabral LJ, Freeman G (1972) Cell renewal in the lungs of rats exposed to low levels of NO2. Arch Environ Health 24:180–188

    PubMed  CAS  Google Scholar 

  15. 15. Fukuto JM (1995) Chemistry of nitric oxide: biologically relevant aspects. In: Ignarro L, Murad F (eds) Nitric oxide. Biochemistry, molecular biology and therapeutic implications. Academic press, San Diego, S 1–13

    Chapter  Google Scholar 

  16. 16. Doyle MP, Hoekstra JM (1981) Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Inorg Biochem 14:351–358

    Article  PubMed  CAS  Google Scholar 

  17. 17. Curry S (1982) Methemoglobinemia. Ann Emerg Med 11:214–221

    Article  PubMed  CAS  Google Scholar 

  18. 18. Rossaint R, Falke KJ, Lopez F, Slama K, Pison U, Zapol WM (1993) Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 328:399–405

    Article  PubMed  CAS  Google Scholar 

  19. 19. Putensen C, Rasanen J, Downs JB (1994) Effect of endogenous and inhaled nitric oxide on the ventilation-perfusion relationships in oleic-acid lung injury. Am J Respir Crit Care Med 150:330–336

    PubMed  CAS  Google Scholar 

  20. 20. Mira JP, Monchi M, Brunet F, Fierobe L, Dhainaut JF, Dinh-Xuan AT (1994) Lack of efficacy of inhaled nitric oxide in ARDS. Intensive Care Med 20:532

    Article  PubMed  CAS  Google Scholar 

  21. 21. McIntyre RC Jr, Moore FA, Moore EE, Piedalue F, Haenel JS, Fullerton DA (1995) Inhaled nitric oxide variably improves oxygenation and pulmonary hypertension in patients with acute respiratory distress syndrome. J Trauma 39:418–425

    Article  PubMed  CAS  Google Scholar 

  22. 22. Lundin S, Westfelt UN, Stenqvist O, Blomqvist H, Lindh A, Berggren L, Arvidsson S, Rudberg U, Frostell CG (1996) Response to nitric oxide inhalation in early acute lung injury. Intensive Care Med 22:728–734

    Article  PubMed  CAS  Google Scholar 

  23. 23. Michael JR, Barton RG, Saffle JR, Mone M, Markewitz BA, Hillier K, Elstad MR, Campbell EJ, Troyer BE, Whatley RE, Liou TG, Samuelson WM, Carveth HJ, Hinson DM, Morris SE, Davis BL, Day RW (1998) Inhaled nitric oxide versus conventional therapy: effect on oxygenation in ARDS. Am J Respir Crit Care Med 157:1372–1380

    PubMed  CAS  Google Scholar 

  24. 24. Rengasamy A, Johns R (1993) Regulation of nitric oxide synthase by nitric oxide. Mol Pharmacol 44:124–128

    PubMed  CAS  Google Scholar 

  25. 25. Bigatello LM, Hurford WE, Kacmarek RM, Roberts JD Jr, Zapol WM (1994) Prolonged inhalation of low concentrations of nitric oxide in patients with severe adult respiratory distress syndrome. Effects on pulmonary hemodynamics and oxygenation. Anesthesiology 80:761–770

    Article  PubMed  CAS  Google Scholar 

  26. 26. Dellinger RP, Zimmerman JL, Taylor RW, Sträube RC, Hauser DL, Criner GJ, Davis K Jr, Hyers TM, Papadakos P (1998) Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit Care Med 26:15–23

    Article  PubMed  CAS  Google Scholar 

  27. 27. Troncy E, Collet JP, Shapiro S, Gui-mond JG, Blair L, Ducruet T, Fran-coeur M, Charbonneau M, Blaise G (1998) Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am J Respir Crit Care Med 157:1483–1488

    PubMed  CAS  Google Scholar 

  28. 28. Wysocki M, Vignon P, Roupie E, Humbert M, Adnot S, Lemaire F, Brochard L (1993) Improvement in right ventricular function with inhaled nitric oxide in patients with the adult respiratory distress syndrome (ARDS) and permissive hypercapnia. American Review of Respiratory Disease 147:A350

    Google Scholar 

  29. 29. Rossaint R, Slama K, Steudel W, Gerlach H, Pappert D, Veit S, Falke K (1995) Effects of inhaled nitric oxide on right ventricular function in severe acute respiratory distress syndrome. Intensive Care Med 21:197–203

    Article  PubMed  CAS  Google Scholar 

  30. 30. Wysocki M, Delclaux C, Roupie E, Langeron O, Liu N, Herman B, Lemaire F, Brochard L (1994) Additive effect on gas exchange of inhaled nitric oxide and intravenous almitrine bismesylate in the adult respiratory distress syndrome. Intensive Care Med 20:254–259

    Article  PubMed  CAS  Google Scholar 

  31. 31. Roch A, Papazian L, Bregeon F, Gainnier M, Michelet P, Thirion X, Saux P, Thomas P, Jammes Y, Auffray J (2001) High or low doses of almitrine bismesylate in ARDS patients responding to inhaled NO and receiving norepinephrine? Intensive Care Med 27:1737–1743

    Article  PubMed  CAS  Google Scholar 

  32. 32. Johannigman JA, Davis K Jr, Campbell RS, Luchette FA, Frame SB, Branson RD (2000) Positive end-expiratory pressure and response to inhaled nitric oxide: changing nonresponders to responders. Surgery 127:390–394

    Article  PubMed  CAS  Google Scholar 

  33. 33. Adrie C, Holzmann A, Hirani WM, Zapol WM, Hurford WE (2000) Effects of intravenous Zaprinast and inhaled nitric oxide on pulmonary hemodynamics and gas exchange in an ovine model of acute respiratory distress syndrome. Anesthesiology 93:422–430

    Article  PubMed  CAS  Google Scholar 

  34. 34. Radermacher P, Santak B, Wust HJ, Tarnow J, Falke KJ (1990) Prostacyclin for the treatment of pulmonary hypertension in the adult respiratory distress syndrome: effects on pulmonary capillary pressure and ventilation-perfusion distributions. Anesthesiology 72:238–244

    Article  PubMed  CAS  Google Scholar 

  35. 35. Walmrath D, Schneider T, Pilch J, Grimminger F, Seeger W (1993) Aerosolised prostacyclin in adult respiratory distress syndrome. Lancet 342:961–962

    Article  PubMed  CAS  Google Scholar 

  36. 36. van Heerden PV, Webb SA, Hee G, Corkeron M, Thompson WR (1996) Inhaled aerosolized prostacyclin as a selective pulmonary vasodilator for the treatment of severe hypoxaemia. Anaesth Intensive Care 24:87–90

    Google Scholar 

  37. 37. Walmrath D, Schneider T, Schermuly R, Olschewski H, Grimminger F, Seeger W (1996) Direct comparison of inhaled nitric oxide and aerosolized prostacyclin in acute respiratory distress syndrome. Am J Respir Crit Care Med 153:991–996

    PubMed  CAS  Google Scholar 

  38. 38. Zwissler B, Kemming G, Habler O, Kleen M, Merkel M, Haller M, Briegel J, Weite M, Peter K (1996) Inhaled prostacyclin (PGI2) versus inhaled nitric oxide in adult respiratory distress syndrome. Am J Respir Crit Care Med 154:1671–1677

    PubMed  CAS  Google Scholar 

  39. 39. Vane JR, Anggard EE, Botting RM (1990) Regulatory functions of the vascular endothelium. Lancet 323:27–36

    CAS  Google Scholar 

  40. 40. Rosenkranz B, Fischer C, Weimer KE, Frolich JC (1980) Metabolism of prostacyclin and 6-keto-prostaglandin F1 alpha in man. J Biol Chem 255: 10194–10198

    PubMed  CAS  Google Scholar 

  41. 41. Machin SJ, Chamone DA, Defrein G, Vermylen J (1981) The effect of clinical prostacyclin infusions in advanced arterial disease on platelet function and plasma 6-keto PGF1 alpha levels. Br J Haematol 47:413–422

    Article  PubMed  CAS  Google Scholar 

  42. 42. Machleidt C, Forstemann U, Anhut A (1981) Formation and elimination of prostacyclin metabolites in the cat in vivo as determined by radioimmunoassay of unextracted plasma. Eur J Pharmacol 74:19–26

    Article  PubMed  CAS  Google Scholar 

  43. 43. Berry CN, Hoult JR (1983) 6-keto-prostaglandin E1: its formulation by platelets from prostacyclin and resistance to pulmonary degradation. Pharmacology 26:324–330

    Article  PubMed  CAS  Google Scholar 

  44. 44. Kemming GI, Kreyling W, Habler O, Merkel M, Kleen M, Weite M, Mess-mer K, Zwissler B (1996) Aerosol production and aerosol droplet size distribution during mechanical ventilation (IPPV) with a new ultrasonic nebulizer. Eur J Med Res 18:321–327

    Google Scholar 

  45. 45. Pappert D, Busch T, Gerlach H, Le-wandowski K, Radermacher P, Ros-saint R (1995) Aerosolized prostacyclin versus inhaled nitric oxide in children with severe acute respiratory distress syndrome. Anesthesiology 82:1507–1511

    Article  PubMed  CAS  Google Scholar 

  46. 46. Dembinski R, Max M, Kuhlen R, Kurth R, Rossaint R (2001) Effect of inhaled prostacyclin in combination with almitrine on ventilation-perfusion distributions in experimental lung injury. Anesthesiology in press

    Google Scholar 

  47. 47. van Heerden PV, Barden A, Michalo-poulos N, Bulsara MK, Roberts BL (2000) Dose-response to inhaled aerosolized prostacyclin for hypoxemia due to ARDS. Chest 117:819–827

    Article  PubMed  Google Scholar 

  48. 48. Burghuber OC, Silberbauer K, Haber P, Sinzinger H, Elliott M, Leithner C (1984) Pulmonary and antiaggregatory effects on prostacyclin after inhalation and intravenous infusion. Respiration 45:450–454

    Article  PubMed  CAS  Google Scholar 

  49. 49. van Heerden PV, Gibbs NM, Michalopouluos N (1997) The effect of low concentrations of prostacyclin on platelet function in vitro. Anaesth Intensive Care 24:343–346

    Google Scholar 

  50. 50. Meyer J, Theilmeier G, van Aken H, Bone HG, Busse H, Waurick R, Hinder F, Booke M (1998) Inhaled prostaglandin E1 for treatment of acute lung injury in severe multiple organ failure. Anesth Analg 86:753–758

    PubMed  CAS  Google Scholar 

  51. 51. Putensen C, Hormann C, Kleinsasser A, Putensen-Himmer G (1998) Cardiopulmonary effects of aerosolized prostaglandin El and nitric oxide inhalation in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 157:1743–1747

    PubMed  CAS  Google Scholar 

  52. 52. Putensen C (2000) Acute lung injury. In: Roca J, Rodriguez-Roisin R, Wagner PD (eds) Pulmonary and peripheral gas exchange in health and disease. Marcel Decker, New York, S 303–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dembinski, R., Kuhlen, R., Max, M., Rossaint, R. (2003). Inhalative Vasodilatatoren beim akuten Lungenversagen. In: Die Intensivtherapie bei akutem Lungenversagen. Steinkopff, Heidelberg. https://doi.org/10.1007/978-3-642-57349-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57349-1_6

  • Publisher Name: Steinkopff, Heidelberg

  • Print ISBN: 978-3-7985-1395-2

  • Online ISBN: 978-3-642-57349-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics