Skip to main content

Computation of Dendrites on Parallel Distributed Memory Architectures

  • Conference paper
Simulation and Visualization on the Grid

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 13))

Abstract

A code for simulating the solidification of a pure material from its undercooled melt based on a phase field approach has been written for parallel distributed memory architectures using MPI. The numerical scheme is based on finite differences and results in large sparse non-linear systems, which are then solved by a backtracking line search modification of Newton’s method combined with GMRES. Experiments conducted on an IBM SP2 and networks of Sun Ultra 5 workstations show that the code scales well with the number of processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Braun and B. T. Murray. Adaptive phase-field computations of dendritic crystal growth. J. Crystal Growth, pages 41–53, 1997.

    Google Scholar 

  2. P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM J. Stat. Comp, 11:450–481, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Caginalp and X. Chen. Phase field equations in the singular limit of sharp interface problems. In M. E. Curtin and G. B. McFadden, editors, On the evolution of phase boundaries. Springer-Verlag, 1992.

    Google Scholar 

  4. S. Chen, B. Merriman, S. Osher, and P. Smereka. A simple level set method for solving Stefan problems. J. Comp. Phys, 135:8–29, 1997.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. J. E. Dennis and R. B. Schnabel. Numerical methods for unconstrained optimization. Prentice Hall, 1983.

    MATH  Google Scholar 

  6. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message Passing Interface. The MIT Press, 1994.

    Google Scholar 

  7. J. L. Gustafson, G. R. Montry, and R.E. Benner. Development of parallel methods for a 1024-processor hypercube. Siam J. Sci. Stat. Comp., 9:609–638, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Hairer, S. P. Norsett, and G. Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, 1987.

    Google Scholar 

  9. A. Karma and W.-J. Rappel. Phase-field methods for computationally efficient modeling of solidification with arbitrary interface kinetics. Phys. Rev. E, 53, 1996.

    Google Scholar 

  10. S. K. Kim and A. T. Chronopoulos. A class of Lanczos-like algorithms implemented on parallel computers. Parallel Comput., 17:763–778, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Kobyashi A numerical approach to three-dimensional dendritic solidification. Experimental Mathematics, 3:59–80, 1994.

    Article  MathSciNet  Google Scholar 

  12. Y. Saad. Iterative methods for sparse linear systems. PWS Publishing Company, 1996.

    Google Scholar 

  13. Y. Saad, G.-C. Lo, and S. Kuznetsov. PSPARSLIB Users Manual. <http://www.cs.umn.edu/Research/darpa/p_sparslib/psp-abs.html>.

    Google Scholar 

  14. Y. Saad and M. Schultz. GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Stat. Comp., 7:856–869, 1986.

    Article  MATH  Google Scholar 

  15. A. Schmidt. Computation of three dimensional dendrites with finite elements. J. Comp. Phys., 125:293–312, 1996.

    Article  ADS  MATH  Google Scholar 

  16. R. Tönhardt. Convective effects on dendritic solidification. PhD thesis, Royal Institute of Technology, 1998.

    Google Scholar 

  17. S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun, and G. B. McFadden. Thermodynamically consistent phase-field models for solidification. Physica D, 69:189–200, 1993.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. J. A. Warren and W. J Boettinger. Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta metall. mater., 43:689–703, 1995.

    Article  Google Scholar 

  19. A. A. Wheeler, B. T. Murray, and R. J. Schaefer. Computation of dendrites using a phase field model. Physica D, 66:243–262, 1993.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersson, C. (2000). Computation of Dendrites on Parallel Distributed Memory Architectures. In: Engquist, B., Johnsson, L., Hammill, M., Short, F. (eds) Simulation and Visualization on the Grid. Lecture Notes in Computational Science and Engineering, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57313-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57313-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67264-7

  • Online ISBN: 978-3-642-57313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics