Skip to main content

Using Block Norms in Bicriteria Optimization

  • Conference paper
Research and Practice in Multiple Criteria Decision Making

Abstract

We propose to use block norms to generate nondominated solutions of multiple criteria programs and introduce the new concept of the oblique norm that is specially tailored to handle general problems. We show the applicability of oblique norms to deal with discrete or convex bicriteria programs and also discuss implications of using block norms in multiple criteria decision making.

*

On leave from the Department of Mathematics, University of Kaiserslautern, Kaiserslautern, Germany.

This work was partially supported by ONR Grant N00014-97-1-0784.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ballestero, Enrique; Romero, Carlos (1998). Multiple Criteria Decision Making and its Applications to Economic Problems. Kluwer Academic Publishers, Boston.

    Google Scholar 

  • Bárdossy, Andras; Bogárdi, Istvan; Duckstein, Lucien (1985). Composite Programming as an Extension of Compromise Programming. In Mathematics of Multiobjective Optimization (edited by P. Serafini), pages 375–408. Springer-Verlag, New York.

    Google Scholar 

  • Bauer, F. L.; Stoer, J.; Witzgall, C. (1961). Absolute and monotonic norms. Numerische Mathematik, 3:257–264.

    Article  Google Scholar 

  • Carrizosa, E.; Conce, E.; Pascual, A.; Romero-Morales, D. (1996). Closest Solutions in Ideal-Point Methods. In Advances in Multiple Objective and Goal Programming (edited by R. Caballero; F. Ruiz; R. E. Steuer), pages 274–281. Springer-Verlag, Berlin.

    Google Scholar 

  • Gearhart, W. B. (1979). Compromise Solutions and Estimation of the Noninferior Set. Journal of Optimization Theory and Applications, 28:29–47.

    Article  Google Scholar 

  • Geoffrion, A. M. (1968). Proper Efficiency and the Theory of Vector Maximization. Journal of Mathematical Analysis and Applications, 22(3):618–630.

    Article  Google Scholar 

  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993a). Convex Analysis and Minimization Algorithms I. Springer-Verlag, Berlin.

    Google Scholar 

  • Hiriart-Urruty, Jean-Baptiste; Lemaréchal, Claude (1993b). Convex Analysis and Minimization Algorithms IL Springer-Verlag, Berlin.

    Google Scholar 

  • Kaliszewski, Ignacy (1987). A Modified Weighted Tchebycheff Metrie for Multiple Objective Programming. Computers and Operations Research, 14:315–323.

    Article  Google Scholar 

  • Miura, H.; Chargin, M. K. (1996). A flexible formulation for multi-objective design problems. AIAA Journal, 34:1187–1192.

    Google Scholar 

  • Ogryczak, W.; Studzinski, K.; Zorychta, K. (1988). Dynamic Interactive Network System — DINAS version 2.1. User’s Manual. IIASA Working Paper WP-88-114, Laxenburg, Austria.

    Google Scholar 

  • Rockafellar, R. Tyrrell (1970). Convex Analysis. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Schandl, Bernd (1998). On Some Properties of Gauges. Tech. Rep. 662, Department of Mathematical Sciences, Clemson University, Clemson, SC.

    Google Scholar 

  • Silverman, J.; Steuer, R. E.; Whisman, A. W. (1988). A multi-period, multiple criteria optimization system for manpower planning. European Journal of Operational Research, 34:160–170.

    Article  Google Scholar 

  • Steuer, Ralph E. (1986). Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York.

    Google Scholar 

  • Steuer, Ralph E.; Choo, E. U. (1983). An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming. Mathematical Programming, 26:326–344.

    Article  Google Scholar 

  • Szidarovszky, Ferenc; Gershon, Mark E.; Duckstein, Lucien (1986). Techniques for Multiobjective Decision Making in Systems Management. Elsevier Science Publishing, New York.

    Google Scholar 

  • Ward, J. E.; Wendell, R. E. (1985). Using Block Norms for Location Modeling. Operations Research, 33:1074–1090.

    Article  Google Scholar 

  • Wierzbicki, Andrzej P. (1980). The Use of Reference Objectives in Multi-objective Optimization. Lecture Notes in Economics and Mathematical Systems, 177:468–486.

    Article  Google Scholar 

  • Yu, P. L. (1973). A Class of Solutions for Group Decision Problems. Management Science, 19:936–946.

    Article  Google Scholar 

  • Zeleny, M. (1973). Compromise Programming. In Multiple Criteria Decision Making (edited by J.L. Cochrane; M. Zeleny), pages 262–301. University of South Carolina, Columbia, SC.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schandl, B., Klamroth, K., Wiecek, M.M. (2000). Using Block Norms in Bicriteria Optimization. In: Haimes, Y.Y., Steuer, R.E. (eds) Research and Practice in Multiple Criteria Decision Making. Lecture Notes in Economics and Mathematical Systems, vol 487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57311-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57311-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67266-1

  • Online ISBN: 978-3-642-57311-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics